首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Fe3O4@mMoO3介孔多功能纳米载体的制备及其微波响应药物传递
引用本文:刘诗诗,彭红霞,胡继林,贺爱兰,陈占军,彭秧锡.Fe3O4@mMoO3介孔多功能纳米载体的制备及其微波响应药物传递[J].无机化学学报,2019,35(7):1155-1162.
作者姓名:刘诗诗  彭红霞  胡继林  贺爱兰  陈占军  彭秧锡
作者单位:精细陶瓷与粉体材料湖南省重点实验室湖南人文科技学院材料与环境工程学院;中南大学材料科学与工程学院
基金项目:国家自然科学基金(No.51704116)、中国博士后科学基金项目(No.2017M612582)、湖南省科技计划项目(No.2016TP1028)、湖南省教育厅科学研究项目(No.16B136)和湖南省双一流学科建设资助项目
摘    要:以氨基功能化的Fe_3O_4纳米颗粒为磁核,结合直接沉淀法和模板法在其表面包覆上介孔MoO_3层,制备磁性-微波热转换性-介孔结构于一体的多功能核-壳结构复合纳米载体Fe_3O_4@mMoO_3,并对其结构、载药及微波控制靶向给药性进行研究。TEM图表明所得的复合纳米载体具有明显的核壳结构,完美的球形,且壳层中有清晰的孔状结构。磁性和微波热转换特性分析表明,该复合载体兼具良好的磁性和微波热转换特性,可实现药物的靶向可控给药。以布洛芬(IBU)为模型药物,对该复合纳米载体的药物负载能力和微波响应可控释放性进行研究,结果表明,在持续微波辐射90 s时IBU的释放率达到90%,远远高于仅搅拌时的释放率。

关 键 词:介孔材料  磁性  微波化学  药物传递
收稿时间:2018/12/22 0:00:00
修稿时间:2019/4/19 0:00:00

Mesoporous Fe3O4@mMoO3 Multifunctional Nanocarriers: Preparation and Microwave Response Drug Delivery
LIU Shi-Shi,PENG Hong-Xi,HU Ji-Lin,HE Ai-Lan,CHEN Zhan-Jun and PENG Yang-Xi.Mesoporous Fe3O4@mMoO3 Multifunctional Nanocarriers: Preparation and Microwave Response Drug Delivery[J].Chinese Journal of Inorganic Chemistry,2019,35(7):1155-1162.
Authors:LIU Shi-Shi  PENG Hong-Xi  HU Ji-Lin  HE Ai-Lan  CHEN Zhan-Jun and PENG Yang-Xi
Institution:Human Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Human University of Humanities, Science and Technology, Loudi, Hunan 417000, China,Human Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Human University of Humanities, Science and Technology, Loudi, Hunan 417000, China;School of Materials Science and Engineering, Central South University, Changsha 410000, China,Human Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Human University of Humanities, Science and Technology, Loudi, Hunan 417000, China,Human Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Human University of Humanities, Science and Technology, Loudi, Hunan 417000, China,Human Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Human University of Humanities, Science and Technology, Loudi, Hunan 417000, China and Human Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Human University of Humanities, Science and Technology, Loudi, Hunan 417000, China
Abstract:The porous Fe3O4@mMoO3 multifunctional core-shell nanoparticles were used to microwave-triggered controlled-release drug delivery systems. We also studied its magnetic-microwave heat transfer property and large specific surface area. We chose ibuprofen (IBU) as a model drug to evaluate the loading and release function of the Fe3O4@mMoO3 nanoparticles, and used a direct precipitation method and thermal decomposition of C19H42BrN (CTAB) template method to synthesize core-shell structured Fe3O4@mMoO3 nanoparticles. The specific surface areas were calculated by the Brunauer-Emmett-Teller (BET) method. The drug loading and controlled release of the Fe3O4@mMoO3 triggered by microwave was determined with ultraviolet-visible spectroscopic analysis. The Fe3O4@mMoO3 nanoparticles possessed high surface area of 94 cm2·g-1, provided large accessible pore diameter of 2.5 nm for adsorption of drug molecules, high magnetization saturation value of 42.3 emu·g-1 for drug targeting under foreign magnetic fields, and quickly converted electromagnetic energy into thermal energy for controlled release by microwave-triggered which was caused by mMoO3 shell. The release amount of IBU was over 90% within 90 s under microwave discontinuous irradiation and outclassed that under the only stirring. This multifunctional material showed good performance for targeting delivery and microwave controlled release of anticancer drugs. The porous shell and the introduction of absorbing material not only increased the drug loading efficiency of the nanoparticles but also realized the microwave-stimulated anticancer drug controlled release.
Keywords:mesoporous materials  magnetic property  microwave chemistry  drug delivery
本文献已被 CNKI 等数据库收录!
点击此处可从《无机化学学报》浏览原始摘要信息
点击此处可从《无机化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号