首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
Biodegradable polyester resins were prepared via photo crosslinking of functional polyesters obtained by copolymerization of ε‐caprolactone and the functional cyclic esters γ‐acryloyloxy‐ε‐caprolactone (ACL) and γ‐methacryloyloxy‐ε‐caprolactone (MCL). The cyclic esters were prepared via Baeyer‐Villiger oxidation of the corresponding 4‐acyloyloxy‐cyclohexanone derivatives. Copolymers with different content of either acryloyloxy or methacryloyloxy functional groups were prepared via catalyzed ring‐opening polymerization (ROP) of γ‐acyloyloxy‐ε‐caprolactones and ε‐caprolactone using Al(OiPr)3 as catalyst and initiator. 2D‐ and 3D‐micropatterning of the copolymers was performed via UV‐crosslinking of polymer films on a suitable substrate and by UV replica molding on both rigid and elastic masters, showing the processability of these novel functional polyesters and their potential as substrates for biomedical devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6789–6800, 2008  相似文献   

2.
The graft polymerization of ε‐caprolactone (ε‐CL) onto magnetite was carried out under microwave irradiation in the presence of tin(II) 2‐ethylhexanoate. The molar ratio of ε‐CL to tin(II) 2‐ethylhexanoate was 300, whereas the molar ratio of ε‐CL to magnetite was 5. The chemical structures of the obtained poly(ε‐caprolactone) coated magnetic nanoparticles were characterized by FTIR and XPS spectroscopy. These magnetic‐polymer hybrid nanostructures were further investigated by X‐ray diffraction and magnetization measurements. The morphology of the magnetic core‐shell nanostructures were determined by TEM. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5397–5404, 2009  相似文献   

3.
Coating of silica nanoparticles by biocompatible and biodegradable polymers of ε‐caprolactone and L ‐lactide was performed in situ by ring‐opening polymerization of the cyclic monomers with aluminum, yttrium, and tin alkoxides as catalysts. Hydroxyl groups were introduced on the silica surface by grafting of a prehydrolyzed 3‐glycidoxypropyl trimethoxysilane to initiate a catalytic polymerization in the presence of metal alkoxides. In this manner, free polymer chains were formed to grafted ones, and the graft density was controlled by the nature of the metal and the alcohol‐to‐metal ratio. The grafting reaction was extensively characterized by spectroscopic techniques and quantified. Nanocomposites containing up to 96% of polymer were obtained by this technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1976–1984, 2004  相似文献   

4.
A hydroxy‐functionalized bipyridine ligand was polymerized with ε‐caprolactone utilizing the controlled ring‐opening polymerization of ε‐caprolactone in the presence of stannous octoate. The resulting poly(ε‐caprolactone)‐containing bipyridine was characterized by 1H NMR and IR spectroscopy, and gel permeation chromatography, as well as matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, revealing the successful incorporation of the bipyridine ligand into the polymer chain. Coordination to iridium(III) and ruthenium(II) precursor complexes yielded two macroligand complexes, which were characterized by NMR, gel permeation chromatography, matrix‐assisted laser desorption/ionization time‐of‐flight MS, cyclic voltammetry, and differential scanning calorimetry. In addition, both photophysical and electrochemical properties of the metal‐containing polymers proved the formation of a trisruthenium(II) and a trisiridium(III) polypyridyl species, respectively. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4153–4160, 2004  相似文献   

5.
The ring‐opening copolymerization of ethylene carbonate (EC) with ε‐caprolactone (CL) was carried out using neodymium tris(2,6‐di‐tert‐butyl‐4‐methylphenolate) as a single‐component catalyst. Copolymers containing up to 22.0% EC contents with high molecular weights (up to 23.97 × 104) and moderate molecular weight distributions (between 1.66 and 2.03) were synthesized at room temperature. Compared with homopoly(ε‐caprolactone), the copolymers with EC units exhibited increased glass transition temperatures (?35.6 °C), reduced melting temperatures (44.5 °C), and greatly enhanced elongation percentage at break (2383%) based on dynamic mechanic analysis. The crystallinities of the copolymers decreased with the increasing EC molar percentage in the products. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4050–4055, 2008  相似文献   

6.
For the first time, poly(ε‐caprolactone) and poly(ε‐caprolactone‐co‐ε‐caprolactam) nanoparticles were successfully obtained by anionic polymerization of ε‐caprolactone and anionic copolymerization of ε‐caprolactone with ε‐caprolactam, respectively, in heterophase by the miniemulsion technique. After polymerization the resulting dispersions are stable for hours in case of the pure polyester and days for the copolymer. The syntheses were carried out with different continuous phases, amounts of surfactant, initiator, and monomers. The influence of the reaction parameters on the molecular weight of the polymers and on colloidal characteristics like size and morphology of the nanoparticles were studied by dynamic light scattering, gel permeation chromatography, differential scanning calorimetry, nuclear magnetic resonance, and Fourier transform infrared spectroscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
We report the coating of maghemite (γ‐Fe2O3) nanoparticles with poly(ε‐caprolactone) (PCL) through a covalent grafting to technique. ω‐Hydroxy‐PCL was first synthesized by the ring‐opening polymerization of ε‐caprolactone with aluminum isopropoxide and benzyl alcohol as a catalytic system. The hydroxy end groups of PCL were then derivatized with 3‐isocyanatopropyltriethoxysilane in the presence of tetraoctyltin. The triethoxysilane‐functionalized PCL macromolecules were finally allowed to react on the surface of maghemite nanoparticles. The composite nanoparticles were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Effects of the polymer molar mass and concentration on the amount of polymer grafted to the surface were investigated. Typical grafting densities up to 3 μmol of polymer chains per m2 of maghemite surface were obtained with this grafting to technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6011–6020, 2004  相似文献   

8.
Well‐defined macromonomers of poly(ethylene oxide) and poly(tert‐butyl methacrylate) were obtained by anionic polymerization induced directly by the carbanion issued from 2‐methyl‐2‐oxazoline. When ethylene oxide was added to this carbanion with lithium as the counterion, a new compound able to initiate the polymerization of ε‐caprolactone in an anionically coordinated way was synthesized, and this led to well‐defined poly(ε‐caprolactone) macromonomers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2440–2447, 2005  相似文献   

9.
The ABCD 4‐miktoarm star polymers based on polystyrene (PS), poly(ε‐caprolactone) (PCL), poly(methyl acrylate) (PMA), and poly(ethylene oxide) (PEO) were synthesized and characterized successfully. Using the mechanism transformation strategy, PS with three different functional groups (i.e., hydroxyl, alkyne, and trithiocarbonate), PS‐HEPPA‐SC(S)SC12H25, was synthesized by the reaction of the trithiocarbonate‐terminated PS with 2‐hydroxyethyl‐3‐(4‐(prop‐2‐ynyloxy)phenyl) acrylate (HEPPA) in tetrahydrofuran (THF) solution. Subsequently, the ring‐opening polymerization (ROP) of ε‐caprolactone (CL) was carried out in the presence of stannous(II) 2‐ethylhexanoate and PS‐HEPPA‐SC(S)SC12H25, and then the PS‐HEPPA(PCL)‐SC(S)SC12H25 obtained was used in reversible addition‐fragmentation chain transfer (RAFT) polymerization of methyl acrylate (MA) to produce the ABC 3‐miktoarm star polymer, S(PS)(PCL)(PMA) carrying an alkyne group. The ABCD 4‐miktoarm star polymer, S(PS)(PCL)(PMA)(PEO) was successfully prepared by click reaction of the alkyne group on the HEPPA unit with azide‐terminated PEO (PEO‐N3). The target polymer and intermediates were characterized by NMR, FTIR, GPC, and DSC. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6641–6653, 2008  相似文献   

10.
Ethylene oxide (EO) has been block‐polymerized with both ε‐caprolactone (ε‐CL) and γ‐methyl‐ε‐caprolactone (MCL) through the combination of the anionic polymerization of EO and the ring‐opening polymerization (ROP) of ε‐CL and MCL. ω‐Hydroxyl poly(ethylene oxide) has been reacted with triethylaluminum (OH/Al = 1) and converted into a macroinitiator for ROP of ε‐CL and MCL. In toluene at room temperature, this polymerization leads to a bimodal molecular weight distribution as a result of monomer insertion in only some of the aluminum alkoxide bonds. However, in a more polar solvent (methylene chloride) added with 1 equiv of a Lewis base (pyridine), the expected diblock is formed selectively, and this indicates that aggregation of the active species in toluene is responsible for a macroinitiator efficiency of less than 1. A series of amphiphilic diblock copolymers with poly(ε‐caprolactone) (semicrystalline) and poly(γ‐methyl‐ε‐caprolactone) (amorphous) as the hydrophobic blocks have been prepared and characterized with size exclusion chromatography, 1H NMR, IR, and wide‐angle X‐ray scattering. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1132–1142, 2004  相似文献   

11.
Two new ring opening polymerization (ROP) initiators, namely, (3‐allyl‐2‐(allyloxy)phenyl)methanol and (3‐allyl‐2‐(prop‐2‐yn‐1‐yloxy)phenyl)methanol each containing two reactive functionalities viz. allyl, allyloxy and allyl, propargyloxy, respectively, were synthesized from 3‐allylsalicyaldehyde as a starting material. Well defined α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy bifunctionalized poly(ε‐caprolactone)s with molecular weights in the range 4200–9500 and 3600–10,900 g/mol and molecular weight distributions in the range 1.16–1.18 and 1.15–1.16, respectively, were synthesized by ROP of ε‐caprolactone employing these initiators. The presence of α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone)s was confirmed by FT‐IR, 1H, 13C NMR spectroscopy, and MALDI‐TOF analysis. The kinetic study of ROP of ε‐caprolactone with both the initiators revealed the pseudo first order kinetics with respect to ε‐caprolactone consumption and controlled behavior of polymerization reactions. The usefulness of α‐allyl, α′‐allyloxy functionalities on poly(ε‐caprolactone) was demonstrated by performing the thiol‐ene reaction with poly(ethylene glycol) thiol to obtain (mPEG)2‐PCL miktoarm star copolymer. α‐Allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone) were utilized in orthogonal reactions i.e copper catalyzed alkyne‐azide click (CuAAC) with azido functionalized poly(N‐isopropylacrylamide) followed by thiol‐ene reaction with poly(ethylene glycol) thiol to synthesize PCL‐PNIPAAm‐mPEG miktoarm star terpolymer. The preliminary characterization of A2B and ABC miktoarm star copolymers was carried out by 1H NMR spectroscopy and gel permeation chromatography (GPC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 844–860  相似文献   

12.
A well‐defined comblike copolymer of poly(ethylene oxide‐co‐glycidol) [(poly(EO‐co‐Gly)] as the main chain and poly(ε‐caprolactone) (PCL) as the side chain was successfully prepared by the combination of anionic polymerization and ring‐opening polymerization. The glycidol was protected by ethyl vinyl ether to form 2,3‐epoxypropyl‐1‐ethoxyethyl ether (EPEE) first, and then ethylene oxide was copolymerized with EPEE by an anionic mechanism. The EPEE segments of the copolymer were deprotected by formic acid, and the glycidol segments of the copolymers were recovered after saponification. Poly(EO‐co‐Gly) with multihydroxyls was used further to initiate the ring‐opening polymerization of ε‐caprolactone in the presence of stannous octoate. When the grafted copolymer was mixed with α‐cyclodextrin, crystalline inclusion complexes (ICs) were formed, and the intermediate and final products, poly(ethylene oxide‐co‐glycidol)‐graft‐poly(ε‐caprolactone) and ICs, were characterized with gel permeation chromatography, NMR, differential scanning calorimetry, X‐ray diffraction, and thermogravimetric analysis in detail. The obtained ICs had a channel‐type crystalline structure, and the ratio of ε‐caprolactone units to α‐cyclodextrin for the ICs was higher than 1:1. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3684–3691, 2006  相似文献   

13.
In this work, ring opening insertion polymerization (ROIP) of ε‐caprolactone (ε‐CL) using a series of hydrogen phosphonates (H‐phosphonates) as initiators was investigated. The ROIP occurred by a coordination‐insertion mechanism containing two steps. First, the carbonyl carbon was attacked by the phosphorus atom of the H‐phosphonate tautomerization (a phosphine‐like structure) and the acyl‐oxygen bond was broken. An intermediate was formed by the coordination of the former carbonyl carbon and acyl‐oxygen of ε‐CL to phosphorus atom. Then the phosphorus‐alkoxide of H‐phosphonate was cleavaged to form acyl‐alkoxide bond. Poly(ε‐caprolactone) (PCL)‐inserted H‐phosphonates (PCL‐HPs), which was not only the product of the occurred ROIP but also the initiator for the next ROIP, were produced. After 60 min of microwave irradiation (510 W), PCL with a number‐average molar mass of 7800 g/mol and monomer conversion over 92% was obtained. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6214–6222, 2009  相似文献   

14.
In this work, pristine multiwalled carbon nanotubes (MWNTs) were functionalized by utilizing the free radicals generated through Bergman cyclization of enediyne containing compounds 3 . Polyesters were subsequently grafted from the surface of MWNTs through ring‐opening polymerization of ε‐caprolactone or lactide initiated by free hydroxy groups generated after hydrolysis of ester groups. Functionalized MWNTs were characterized with a variety of techniques, including TGA, NMR, IR, UV–vis, TEM, and Raman spectroscopy. After surface modification, MWNTs showed good solubility in common organic solvents and polymer solutions. Fabrication of MWNTs polymer nanocomposites was revealed through electrospinning with polycaprolactone. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
This article described the synthesis of cyclic poly(ε‐caprolactone) (PCL) via ring‐closing metathesis (RCM), ring closing enyne metathesis (RCEM), and “click” reaction of different difunctional linear PCL. Linear PCL precursors were prepared by ring‐opening polymerization (ROP) of ε‐caprolactone in bulk using 10‐undecen‐1‐ol or propargyl alcohol as the initiator, followed by reacting with corresponding acyl chloride containing vinyl or azido end group. The subsequent end‐to‐end intramolecular coupling reactions were performed under high dilution conditions. The successful transformation of linear PCL precursor to cyclic PCL was confirmed by Gel permeation chromatography, 1H NMR, and Fourier transform infrared measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3022–3033, 2009  相似文献   

16.
Resorbable poly(ester anhydride) networks based on ε‐caprolactone, L ‐lactide, and D,L ‐lactide oligomers were synthesized. The ring‐opening polymerization of the monomers yielded hydroxyl telechelic oligomers, which were end‐functionalized with succinic anhydride and reacted with methacrylic anhydride to yield dimethacrylated oligomers containing anhydride bonds. The degree of substitution, determined by 13C NMR, was over 85% for acid functionalization and over 90% for methacrylation. The crosslinking of the oligomers was carried out thermally with dibenzoyl peroxide at 120 °C, leading to polymer networks with glass‐transition temperatures about 10 °C higher than those of the constituent oligomers. In vitro degradation tests, in a phosphate buffer solution (pH 7.0) at 37 °C, revealed a rapid degradation of the networks. Crosslinked polymers based on lactides exhibited high water absorption and complete mass loss in 4 days. In ε‐caprolactone‐based networks, the length of the constituent oligomer determined the degradation: PCL5‐AH, formed from longer poly(ε‐caprolactone) (PCL) blocks, lost only 40% of its mass in 2 weeks, whereas PCL10‐AH, composed of shorter PCL blocks, completely degraded in 2 days. The degradation of PCL10‐AH showed characteristics of surface erosion, as the dimensions of the specimens decreased steadily and, according to Fourier transform infrared, labile anhydride bonds were still present after 90% mass loss. © 2003 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3788–3797, 2003  相似文献   

17.
Polylysines (PL) are highly interesting polymers due to their biocompatibility and their high number of reactive amino groups. So far it was not possible to synthesize them directly from L ‐lysine. Here, we describe two different synthesis routes to selectively polymerize lysine in one batch without the use of protection groups. Applying 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide as activating agent for the polycondensation of L ‐lysine in water gave selectively linear ε‐PLL. In contrast to this, the polymerization of L ‐lysine in chloroform in the presence of dicyclohexyl carbodiimide and 18‐crown‐6 ether selectively afforded pure α‐PLL. We also assessed the capability of polylysine derivatization by polymer analog reactions with acetic anhydride, methyl iodide and 2,4,6‐trinitrobenzenesulfonic acid. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5053–5063, 2008  相似文献   

18.
A series of di‐ and triblock copolymers [poly(L ‐lactide‐b‐ε‐caprolactone), poly(D,L ‐lactide‐b‐ε‐caprolactone), poly(ε‐caprolactone‐b‐L ‐lactide), and poly(ε‐caprolactone‐b‐L ‐lactide‐b‐ε‐caprolactone)] have been synthesized successfully by sequential ring‐opening polymerization of ε‐caprolactone (ε‐CL) and lactide (LA) either by initiating PCL block growth with living PLA chain end or vice versa using titanium complexes supported by aminodiol ligands as initiators. Poly(trimethylene carbonate‐b‐ε‐caprolactone) was also prepared. A series of random copolymers with different comonomer composition were also synthesized in solution and bulk of ε‐CL and D,L ‐lactide. The chemical composition and microstructure of the copolymers suggest a random distribution with short average sequence length of both the LA and ε‐CL. Transesterification reactions played a key role in the redistribution of monomer sequence and the chain microstructures. Differential scanning calorimetry analysis of the copolymer also evidenced the random structure of the copolymer with a unique Tg. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
A biodegradable aliphatic thermoplastic polyurethane based on L ‐lysine diisocyanate and 1,4‐butanediol hard block segments, and 2000 g/mol poly(ε‐caprolactone) diol soft block segments was synthesized. The resulting polymer was a tough thermoplastic with ultimate tensile strength of 33 MPa and elongation of 1000%. The polymer displayed classic segmented thermoplastic elastomer morphology with distinct hard block and soft block phases. Thermal and dynamic mechanical analyses determined that the material has a useful service temperature range of around ?40 °C to +40 °C, making it an excellent candidate for low‐temperature elastomer and film applications, and potentially as a material for use in temporary orthopedic implant devices. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2990–3000, 2006  相似文献   

20.
Polyamides (PA) constitute one of the most important classes of polymeric materials and have gained strong position in different areas, such as textiles, fibers, and construction materials. Whereas most PA are synthesized by step‐growth polycondensation, PA 6 is synthesized by ring opening polymerization (ROP) of ε‐caprolactam (ε‐CLa). The most popular ROP methods involve the use of alkaline metal catalyst difficult to handle at large scale. In this article, we propose the use of organic acids for the ROP of ε‐CLa in bulk at 180 °C (below the polymer's melting point). Among evaluated organic acids, sulfonic acids were found to be the most effective for the polymerization of ε‐CLa , being the Brønsted acid ionic liquid: 1‐(4‐sulfobutyl)?3‐methylimidazolium hydrogen sulfate the most suitable due to its higher thermal stability. End‐group analysis by 1H nuclear magnetic resonance and model reactions provided mechanistic insights and suggested that the catalytic activity of sulfonic acids was a function of not only the acid strength, but of the nucleophilic character of conjugate base as well. Finally, the ability of sulfonic acid to promote the copolymerization of ε‐CLa and ε‐caprolactone is demonstrated. As a result, poly(ε‐caprolactam‐co‐ε‐caprolactone) copolymers with considerably randomness are obtained. This benign route allows the synthesis of poly(ester amide)s with different thermal and mechanical properties. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2394–2402  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号