首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quasi‐living cationic copolymerization of 3,3‐bis(chloromethyl)oxetane (BCMO) and ε‐caprolactone (ε‐CL), using boron trifluoride etherate as catalyst and 1,4‐butanediol as coinitiator, was investigated in methylene chloride at 0°C. The resulting hydroxyl‐ended copolymers exhibit a narrow molecular weight polydispersity and a functionality of about 2. The reactivity ratios of BCMO (0.26) and ε‐CL (0.47), and the Tg of the copolymers, indicate their statistical character. The synthesis of poly(3,3‐bis(azidomethyl)oxetane‐co‐ε‐caprolactone) from poly(BCMO‐co‐ε‐CL) via the substitution of the chlorine atoms by azide groups, using sodium azide in DMSO at 110°C, occurs without any degradation, but the copolymers decompose at about 240°C. All polymers were characterized by vapor pressure osmometry or steric exclusion chromatography, 1H‐NMR and FTIR spectroscopies, and DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1027–1039, 1999  相似文献   

2.
Per‐2,3‐acetyl‐β‐cyclodextrin with seven primary hydroxyl groups was synthesized by selective modification and used as multifunctional initiator for the ring‐opening polymerization of ε‐caprolactone (CL). Well‐defined β‐cyclodextrin‐centered seven‐arm star poly(ε‐caprolactone)s (CDSPCLs) with narrow molecular weight distributions (≤1.15) have been successfully prepared in the presence of Sn(Oct)2 at 120 °C. The molecular weight of CDSPCLs was characterized by end group 1H NMR analyses and size‐exclusion chromatography (SEC), which could be well controlled by the molar ratio of the monomer to the initiator. Furthermore, amphiphilic seven‐arm star poly(ε‐caprolactone‐b‐ethylene glycol)s (CDSPCL‐b‐PEGs) were synthesized by the coupling reaction of CDSPCLs with carboxyl‐terminated mPEGs. 1H NMR and SEC analyses confirmed the expected star block structures. Differential scanning calorimetry analyses suggested that the melting temperature (Tm), the crystallization temperature (Tc), and the crystallinity degree (Xc) of CDSPCLs all increased with the increasing of the molecular weight, and were lower than that of the linear poly(ε‐caprolactone). As for CDSPCL‐b‐PEGs, the Tc and Tm of the PCL blocks were significantly influenced by the PEG segments in the copolymers. Moreover, these amphiphilic star block copolymers could self‐assemble into spherical micelles with the particle size ranging from 10 to 40 nm. Their micellization behaviors were characterized by dynamic light scattering and transmission electron microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6455–6465, 2008  相似文献   

3.
A series of poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) copolymers were prepared with varying feed rations by using two step polymerization reactions. Poly(trimethylenecarbonate)(ε‐caprolactone) random copolymer was synthesized with stannous‐2‐ethylhexanoate and followed by adding p‐dioxanone monomer as the other block. The ring opening polymerization was carried out at high temperature and long reaction time to get high molecular weight polymers. The monofilament fibers were obtained using conventional melting spun methods. The copolymers were identified by 1H and 13C NMR spectroscopy and gel permeation chromatography (GPC). The physicochemical properties, such as viscosity, molecular weight, melting point, glass transition temperature, and crystallinity, were studied. The hydrolytic degradation of copolymers was studied in a phosphate buffer solution, pH = 7.2, 37 °C, and a biological absorbable test was performed in rats. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2790–2799, 2005  相似文献   

4.
Nontoxic and biodegradable poly(?‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(?‐caprolactone) triblock copolymers were synthesized by the solution polymerization of ?‐caprolactone in the presence of poly(ethylene glycol). The chemical structure of the resulting triblock copolymer was characterized with 1H NMR and gel permeation chromatography. In aqueous solutions of the triblock copolymers, the micellization and sol–gel‐transition behaviors were investigated. The experimental results showed that the unimer‐to‐micelle transition did occur. In a sol–gel‐transition phase diagram obtained by the vial‐tilting method, the boundary curve shifted to the left, and the gel regions expanded with the increasing molecular weight of the poly(?‐caprolactone) block. In addition, the hydrodynamic diameters of the micelles were almost independent of the investigated temperature (25–55 °C). The atomic force microscopy results showed that spherical micelles formed at the copolymer concentration of 2.5 × 10?4 g/mL, whereas necklace‐like and worm‐like shapes were adopted when the concentration was 0.25 g/mL, which was high enough to form a gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 605–613, 2007  相似文献   

5.
Biodegradable, triblock poly(lactide)‐block‐poly(ε‐caprolactone)‐block‐poly(lactide) (PLA‐b‐PCL‐b‐PLA) copolymers and 3‐star‐(PCL‐b‐PLA) block copolymers were synthesized by ring opening polymerization of lactides in the presence of poly(ε‐caprolactone) diol or 3‐star‐poly(ε‐caprolactone) triol as macroinitiator and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C‐NMR. The formation of block copolymers was confirmed by NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5363–5370, 2008  相似文献   

6.
The polymerization of ε‐caprolactone (ε‐CL) has been assessed in water using various Brønsted acids as catalysts. The reaction was found to be quantitative at 100 °C, leading to number–average molecular weights up to 5000 g mol?1. The Brønsted acid‐catalyzed polymerization of ε‐CL in water was further conducted in the presence of water‐soluble polysaccharides thereby affording graft copolymers. The approach enables an easy, mild access to dextran hydroxyesters. For low degree of substitution, the latter self‐assembles in water to form nanoparticles. Poly(ε‐CL)‐graft‐methylcellulose copolymers can also be obtained via a similar approach. It is noteworthy that the methodology reported herein is a one‐step route to poly(ε‐CL)‐graft‐water‐soluble polysaccharides, operating in mild conditions, that is, at low temperatures, using readily available metal‐free catalysts and water as a solvent. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2139–2145  相似文献   

7.
The radical copolymerization of chlorotrifluoroethylene (CTFE) with 3,3,4,4‐tetrafluoro‐4‐bromobut‐1‐ene (BTFB) initiated by tert‐butylperoxypivalate is presented. The microstructures of the obtained copolymers are determined by means of NMR spectroscopies and elemental analysis and show that random copolymers were obtained. A wide range of poly(CTFE‐co‐BTFB) copolymers is synthesized, containing from 17 to 89 mol % of CTFE. In all the cases, CTFE is the less reactive of both comonomers. Td10% values, ranging from 163 up to 359 °C, are dependent on the BTFB content. These variations of thermal property are attributed to the increase in the number of C‐H and C‐Br bonds breakdown when the BTFB molar percentage in the copolymer is higher. Tg values range from 19 to 39 °C and a decreasing trend is observed when increasing the amount of BTFB in the copolymer. This observation arises from the higher flexibility of the copolymer when increasing the number of fluorobrominated lateral chains. These original fluoropolymers bearing reactive pendant bromo groups are suitable candidates for various applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1714–1720  相似文献   

8.
1,4‐Pentadien‐3‐one‐1,5‐bis(p‐hydroxyphenyl) (PBHP) was prepared by reacting p‐hydroxybenzaldehyde and acetone in the presence of an acid catalyst. 1,4‐Pentadiene‐3‐one‐1‐p‐hydroxyphenyl‐5‐p‐phenyl methacrylate (PHPPMA) monomer was prepared by reacting PBHP dissolved in ethyl methyl ketone (EMK) with methacryloyl chloride in the presence of triethylamine. A free‐radical solution polymerization technique was used for synthesizing homo‐ and copolymers of different feed compositions of PHPPMA and ethyl acrylate (EA) in EMK as a solvent with benzoyl peroxide as a free‐radical initiator at 70 ± 1 °C. All the polymers were characterized with IR and 1H NMR techniques. The compositions of the copolymers were determined with the 1H NMR technique. The copolymer reactivity ratios were evolved with Kelen–Tudos (EA = 1.25 and PHPPMA = 0.09) and extended Kelen–Tudos (EA = 1.30 and PHPPMA = 0.09) methods. Q (0.48) and e (1.68) values for the new monomer (PHPPMA) were calculated with the Alfrey–Price method. UV absorption spectra for poly(PHPPMA) showed two absorption bands at 302 and 315 nm. The photocrosslinking properties of the polymer samples were examined with the solvent method. Thermal analyses of the polymers were performed with the thermogravimetric‐differential thermogravimetric technique. First, the decomposition temperatures started for poly(PHPPMA), copoly(EA‐PHPPMA) (62:38), and copoly(EA‐PHPPMA) (41:59) were at 350, 410, and 417 °C, respectively. A gel permeation chromatographic method was used for determining the polymer molecular weights (weight‐average molecular weight: 2.67 × 104 and number‐average molecular weight: 1.41 × 104) and polydispersity index (1.89). The solubility of the monomer and the copolymers occurred at 30 °C with solvents having different polarities. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1632–1640, 2003  相似文献   

9.
4‐acryloylmorpholine/4‐acryloylpiperidine statistical copolymers were synthesized by nitroxide mediated polymerization (NMP) with BlocBuilder unimolecular initiator in dimethylformamide solution at 120 °C. The copolymers had narrow molecular weight distributions (dispersity ? = 1.25–1.35, number average molecular weights M n = 8.5–13.7 kg mol?1). The copolymer microstructure was essentially statistical (reactivity ratios r 4AP = 0.81 ± 0.73, r 4AM = 0.73 ± 0.68 based on non‐linear fitting of the Mayo‐Lewis equation). Cloud point temperatures (CPT) in aqueous media were tuned from 11 °C to 92 °C, merely by adjusting the initial monomer composition. Using NMP permitted sharper control of the CPT transitions, compared to the similar copolymer made using conventional radical polymerization. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2160–2170  相似文献   

10.
Biodegradable, amphiphilic, diblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol) (PCL‐b‐PEG), triblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol)‐block‐poly(ε‐caprolactone) (PCL‐b‐PEG‐b‐PCL), and star shaped copolymers were synthesized by ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) or star poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. For the same PCL chain length, the materials obtained in the case of linear copolymers are viscous whereas in the case of star copolymer solid materials are obtained with low Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3975–3985, 2007  相似文献   

11.
Novel thermoplastic elastomers based on multi‐block copolymers of poly(l ‐lysine) (PLL), poly(N‐ε‐carbobenzyloxyl‐l ‐lysine) (PZLL), poly(ε‐caprolactone) (PCL), and poly(ethylene glycol) (PEG) were synthesized by combination of ring‐opening polymerization (ROP) and chain extension via l ‐lysine diisocyanate (LDI). SEC and 1H NMR were used to characterize the multi‐block copolymers, with number‐average molecular weights between 38,900 and 73,400 g/mol. Multi‐block copolymers were proved to be good thermoplastic elastomers with Young's modulus between 5 and 60 MPa and tensile strain up to 1300%. The PLL‐containing multi‐block copolymers were electrospun into non‐woven mats that exhibited high surface hydrophilicity and wettability. The polypeptide–polyester materials were biocompatible, bio‐based and environment‐friendly for promising wide applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3012–3018  相似文献   

12.
Seven magnesium complexes ( 1–7 ) were synthesized by reaction of new ( L 3 ‐H – L 5 ‐H ) and previously reported ketoimine pro‐ligands with dibutyl magnesium and were isolated in 59–70% yields. Complexes 1–7 were characterized fully and consisted of bis‐ligated homoleptic ketoiminates coordinated in distorted octahedral geometry around the magnesium centers. The complexes were investigated for their ability to initiate the ring opening polymerization (ROP) of l ‐lactide (L‐LA) to poly‐lactic acid (PLA) and ?‐caprolactone (?CL) to poly‐caprolactone in the presence of 4‐fluorophenol co‐catalyst. For L‐LA polymerization, complexes containing ligand electron‐donating groups ( 1–5 ) achieved >90% conversion in 2 h at 100 °C, while the presence of CF3 groups in 6 and 7 slowed or resulted in no PLA detected. With ?CL, ROP initiated with 1–7 resulted in lower percentage conversion with similar electronic effects. Moderate molecular weight PLA polymeric material (14.3–21.3 kDa) with low polydispersity index values (1.23–1.56) was obtained, and ROP appeared to be living in nature. Copolymerization of L‐LA and ?CL yielded block copolymers only from the sequential polymerization of ?CL followed by L‐LA and not the reverse sequence of monomers or the simultaneous presence of both monomers. Polymers and copolymers were characterized with NMR, gel permeation chromatography, and differential scanning calorimetry. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 48–59  相似文献   

13.
The ring‐opening polymerization (ROP) of ethylene brassylate, catalyzed by the cyclic guanidine 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (TBD) is reported. Several experimental parameters were evaluated for bulk ROP process and polyesters, resulting in molecular weights between 3 and 15 kg mol?1. End‐group analysis by 1H nuclear magnetic resonnance (NMR) and matrix assisted laser desorption ionization time of flight computational studies supports the dual behavior of TBD, which can act as both a catalyst and initiator of the polymerization process. Under optimum conditions, semicrystalline poly(ethylene brassylate‐co‐ε‐caprolactone) random copolymers were synthesized. Depending on the comonomer content, our results showed a range of melting temperatures between 39 and 69 °C. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 552–561  相似文献   

14.
The copolymerization of 1,5‐dioxepan‐2‐one (DXO) and ε‐caprolactone, initiated by a five‐membered cyclic tin alkoxide initiator, was performed in chloroform at 60 °C. Copolymers with different molar ratios of DXO (25, 40, and 60%) were synthesized and characterized. 13C NMR spectroscopy of the carbonyl region revealed the formation of copolymers with a blocklike structure. Differential scanning calorimetry measurements showed that all the copolymers had a single glass transition between ?57 and ?49 °C and a melting temperature in the range of 30.1–47.7 °C, both of which were correlated with the amount of DXO. An increase in the amount of DXO led to an increase in the glass‐transition temperature and to a decrease in the melting temperature. Dynamic mechanical thermal analysis measurements confirmed the results of the calorimetric analysis, showing a single sharp drop in the storage modulus in the temperature region corresponding to the glass transition. Tensile testing demonstrated good mechanical properties with a tensile strength of 27–39 MPa and an elongation at break of up to 1400%. The morphology of the copolymers was examined with polarized optical microscopy and atomic force microscopy; the films that crystallized from the melt showed a short fibrillar structure (with a length of 0.05–0.4 μm) in contrast to the untreated solution‐cast films. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2412–2423, 2003  相似文献   

15.
A series of thermosensitive ABA type triblock poly(ε‐caprolactone)‐b‐poly(N‐isopropylacrylamide)‐b‐poly(ε‐caprolactone) (PCL‐PNIPAAm‐PCL) copolymers with different molecular weights were synthesized by the combination of ring opening polymerization and reversible addition‐fragmentation chain transfer (RAFT) polymerization. The critical micelle concentrations (CMCs) of the resulted four triblock copolymers in aqueous solution were determined to be 33.8, 39.8, 35.5, and 41.7 mg/L, respectively, by fluorescence spectroscopy using pyrene as a fluorescence probe. Optical absorption measurements showed that the lower critical solution temperatures (LCSTs) of the copolymers were 35.8, 36.2, 35.2, and 36.2 °C, respectively, in distilled water, and 33.9, 34.2, 33.3, 34.6 °C, respectively, in PBS (pH = 6.8, I = 0.1). Transmission electron microscopy (TEM) showed that the self‐assembled micelles exhibited a well‐defined spherical shape with diameter of around 100 nm. The drug‐loaded PCL‐PNIPAAm‐PCL micelles displayed thermosensitive controlled release behaviors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3048–3057, 2008  相似文献   

16.
Two novel multifunctional precursors with eight alcoholic hydroxyls were synthesized by derivatization of resorcinarene. Well‐defined eight‐arm star‐shaped poly(ε‐caprolactone)s (SPCLs) with reasonably narrow molecular weight distributions have been successfully prepared using the precursors as macro‐initiators and yttrium tris(2,6‐di‐tert‐butyl‐4‐methylphenolate) [Y(DBMP)3] as catalyst at 40 °C. The molecular weight of SPCLs was characterized by end group 1H NMR analyses and size‐exclusion chromatography, which could be well controlled by the molar ratio of the monomer to the precursor. The polymerization is more controllable with the precursor holding longer hydrocarbon chains as R groups. Differential scanning calorimetry analyses suggested that the maximal melting point, the crystallization temperature, and the degree of crystallinities of SPCLs increased with the increasing of the molecular weight, and were significantly lower than that of the counterpart linear poly(ε‐caprolactone) (LPCL). Furthermore, polarized optical microscopy indicated that LPCL showed fast crystallization rate with apparent Maltese cross pattern, whereas SPCL exhibited irregular spherulite and apparently slower crystallization rate. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2108–2118, 2008  相似文献   

17.
The synthesis of poly(p‐phenylene methylene) (PPM)‐based block copolymers such as poly(p‐phenylene methylene)‐b‐poly(ε‐caprolactone) and poly(p‐phenylene methylene)‐b‐polytetrahydrofuran by mechanistic transformation was described. First, precursor PPM was synthesized by acid‐catalyzed polymerization of tribenzylborate at 16 °C. Then, this polymer was used as macroinitiators in either ring‐opening polymerization of ε‐caprolactone or cationic ring‐opening polymerization of tetrahydrofuran to yield respective block copolymers. The structures of the prepolymer and block copolymers were characterized by GPC and 1H NMR investigations. The composition of block copolymers as determined by 1H NMR and TGA analysis was found to be in very good agreement. The thermal behavior and surface morphology of the copolymers were also investigated, respectively, by differential scanning calorimetry and atomic force microscopy measurements, and the contribution of the major soft segment has been observed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Biocompatible and biodegradable ABC and ABCBA triblock and pentablock copolymers composed of poly(ε‐caprolactone) (PCL), poly(L ‐lactide) (PLA), and poly(ethylene glycol) (PEO) with controlled molecular weights and low polydispersities were synthesized by a click conjugation between alkyne‐terminated PCL‐b‐PLA and azide‐terminated PEO. Their molecular structures, physicochemical and self‐assembly properties were thoroughly characterized by means of FT‐IR, 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, wide‐angle X‐ray diffraction, dynamic light scattering, and transmission electron microscopy. These copolymers formed microphase‐separated crystalline materials in solid state, where the crystallization of PCL block was greatly restricted by both PEO and PLA blocks. These copolymers self‐assembled into starlike and flowerlike micelles with a spherical morphology, and the micelles were stable over 27 days in aqueous solution at 37 °C. The doxorubicin (DOX) drug‐loaded nanoparticles showed a bigger size with a similar spherical morphology compared to blank nanoparticles, demonstrating a biphasic drug‐release profile in buffer solution and at 37 °C. Moreover, the DOX‐loaded nanoparticles fabricated from the pentablock copolymer sustained a longer drug‐release period (25 days) at pH 7.4 than those of the triblock copolymer. The blank nanoparticles showed good cell viability, whereas the DOX‐loaded nanoparticles killed fewer cells than free DOX, suggesting a controlled drug‐release effect. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
Linear and star‐like amphiphilic diblock copolymers were synthesized by the ring‐opening polymerization of ε‐caprolactone and γ‐2‐[2‐(2‐methoxyethoxy)ethoxy]ethoxy‐ε‐caprolactone monomers using zinc undecylenate as a catalyst. These polymers have potential applications as micellar drug delivery vehicles, therefore the properties of the linear and 4‐arm star‐like structures were examined in terms of their molecular weight, viscosity, thermodynamic stability, size, morphology, and drug loading capacity. Both the star‐like and linear block copolymers showed good thermodynamic stability and degradability. However, the star‐like polymers were shown to have increased stability at lower concentrations with a critical micelle concentration (CMC) of 5.62 × 10?4 g L?1, which is less than half the concentration of linear polymer needed to form micelles. The star‐like polymeric micelles showed smaller sizes when compared with their linear counterparts and a higher drug loading capacity of doxorubicin, making them better suited for drug delivery purposes. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3601–3608  相似文献   

20.
Ethyl cellulose graft poly(poly(ethylene glycol) methyl ether methacrylate) (EC‐g‐P(PEGMA)) amphiphilic copolymers were synthesized via atom transfer radical polymerization (ATRP) and characterized by FTIR, 1H NMR, and gel permeation chromatography. Reaction kinetics analysis indicated that the graft copolymerization is living and controllable. The self‐assembly and thermosensitive property of the obtained EC‐g‐P(PEGMA) amphiphilic copolymers in water were investigated by dynamic light scattering, transmission electron microscopy, and transmittance. It was found that the EC‐g‐P(PEGMA) amphiphilic copolymers can self‐assemble into spherical micelles in water. The size of the micelles increases with the increase of the side chain length. The spherical micelles show thermosensitive properties with a lower critical solution temperature around 65 °C, which almost independent on the graft density and the length of the side chains. The obtained EC‐g‐P(PEGMA) graft copolymers have both the unique properties of poly(ethylene glycol) and cellulose, which may have the potential applications in biomedicine and biotechnology. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 46: 6907–6915, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号