首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A method for the determination of organotin compounds (monobutyl = MBT, dibutyl = DBT, and tributyltin = TBT) in marine sediments by headspace Solid Phase Microextraction (SPME) has been developed. The analytical procedure involved 1) extraction of TBT, DBT and MBT from sediments with HCl and methanol mixture, 2) in situ derivatization with sodium tetraethylborate and 3) headspace SPME extraction using a fiber coated with poly(dimethylsiloxane). The derivatized organotin compounds were desorbed into the splitless injector and simultaneously analyzed by gas chromatography - mass spectrometry. The analytical method was optimized with respect to derivatization reaction and extraction conditions. The detection limits obtained for MBT, DBT and TBT ranged from 730 to 969 pg/g as Sn dry weight. Linear calibration curves were obtained for all analytes in the range of 30-1000 ng/L as Sn. Analysis of a standard reference sediment (CRM 462) demonstrates the suitability of this method for the determination of butyltin compounds in marine sediments. The application to the determination of TBT, DBT and MBT in a coastal marine sediment is shown.  相似文献   

2.
A method for the determination of organotin compounds (monobutyl = MBT, dibutyl = DBT, and tributyltin = TBT) in marine sediments by headspace Solid Phase Microextraction (SPME) has been developed. The analytical procedure involved 1) extraction of TBT, DBT and MBT from sediments with HCl and methanol mixture, 2) in situ derivatization with sodium tetraethylborate and 3) headspace SPME extraction using a fiber coated with poly(dimethylsiloxane). The derivatized organotin compounds were desorbed into the splitless injector and simultaneously analyzed by gas chromatography – mass spectrometry. The analytical method was optimized with respect to derivatization reaction and extraction conditions. The detection limits obtained for MBT, DBT and TBT ranged from 730 to 969 pg/g as Sn dry weight. Linear calibration curves were obtained for all analytes in the range of 30–1000 ng/L as Sn. Analysis of a standard reference sediment (CRM 462) demonstrates the suitability of this method for the determination of butyltin compounds in marine sediments. The application to the determination of TBT, DBT and MBT in a coastal marine sediment is shown.  相似文献   

3.
A survey of organotin compounds comprising tributyltin (TBT), dibutyltin (DBT) and monobutyltin (MBT) in sediment and clam (Meretrix meretrix) was undertaken in Vietnam in 2003. Samples were collected from dry docks and cargo harbours in Ho Chi Minh (south), Da Nang (centre) and Hai Phong (north) cities. Measurable amounts of TBT, DBT and MBT were found in all samples. The total concentration of the butyltin compounds (ΣBTs) in sediment from shipyards and vessel repair yards (Nam Trieu, Song Cam, Lach Tray and Ba Son) were always higher than those measured in cargo ports (Hai Phong, Da Nang, and Sai Gon). The highest ΣBTs concentration (as tin: 122 ng g?1 dry wt) was found in the sediment from Song Cam station, where seven shipyards are located. The lowest concentrations of ΣBTs occurred in sediments from the Da Nang and Hai Phong cargo ports (as tin: 21–22 ng g?1 dry wt). This implies that the major source of BTs in the marine environment in Vietnam is from the shipbuilding activities. The ratio of TBT to Σ(MBT + DBT) in sediment was 0.67 ± 0.03 for all the sampling sites, indicating the recent use of TBT in Vietnam. For the clam (M. meretrix), the concentration of ΣBTs (as tin) varied in the range 11.2–60.1 ng g?1 wet wt. There was a good correlation (R2 = 0.85) between total organic matter‐normalized ΣBTs in sediment and hexane‐extractable organic matter‐normalized ΣBTs in clam soft tissue. The mean biota–sediment accumulation factors (organic carbon/lipid) for MBT, DBT and TBT in clam's soft tissue were found to be 1.83 ± 0.66, 1.44 ± 0.23 and 1.16 ± 0.47 respectively, indicating that sediment‐bound BTs might be an important source of contamination for the clam. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
A sensitive and selective procedure for the determination of tributyltin chloride (TBT), dibutyltin dichloride (DBT) and monobutyltin trichloride (MBT) based on solid phase extraction (SPE) with ENVI-Carb non-porous carbon as column material followed by adsorptive cathodic stripping voltammetry (AdSV) in the presence of tropolone is reported. The determination limits achieved using a 500 mL water sample were 210 ng L–1 (as Sn) for TBT, 30 ng L–1 (as Sn) for DBT and 40 ng L–1 (as Sn) for MBT. The method was used to determine the levels of butyltin species in surface water from the yacht harbour at Zewen on the Mosel River and in the tap water supply in Trier.Dedicated to Professor Dr. K. Doerffel and Professor Dr. H. Kriegsmann on the occasion of their 70th birthdays  相似文献   

5.
Two analytical procedures based on the generation of volatile tributyltin derivatives, their separation by headspace solid-phase microextraction (HS SPME) and subsequent determination using plasma optical emission spectrometry (OES) have been developed for the selective determination of trace tributyltin (TBT) in the presence of other butyltins and inorganic tin in sediments without the use of chromatography. A microwave-assisted leaching of tin compounds from the sediment using 25%v/v acetic acid is applied for sample pretreatment. The first method takes advantage of TBT chloride releasing from the lecheate after adding 3 M hydrochloric acid, and subsequent separation of the analyte by HS SPME using Carboxen-poly(dimethylsiloxane) (CAR/PDMS). The second method involves the use of masking agents, namely ethylenediaminetetraacetic acid (EDTA) and diphenylcarbazone (DFC), which form stable chelates with monobutyltin (MBT) and dibutyltin (DBT), respectively, followed by the ethylation of tributyltin at pH 5 using sodium tetraethylborate (NaBEt4) solution. The final concentration of NaBEt4 is 0.05%w/v. The parameters affecting the TBT derivatisation and separation by HS SPME have been optimised including the selection of SPME fibre coating (PDMS, CAR/PDMS), the amount of masking agents and NaBEt4 added, sorption time (2–40 min) and sorption temperature (25–60°C). Higher sensitivity and robustness are attained with the method involving ethylation derivatisation, leading to the limit of detection (LOD) of 3 ng L?1. The selective release of TBT is observed from aqueous solutions, where the concentrations of MBT and DBT were in 2–50-fold excess to TBT. The SPME-TD-MIP-OES methods have been validated against several certified reference materials (CRMs), including SOPH-1 marine sediment, PACS-2 marine sediment and BCR 646 freshwater sediment.  相似文献   

6.
This study describes a direct comparison of GC and HPLC hyphenated to ICP–MS determination of tributyltin (TBT) in sediment by species-specific isotope dilution analysis (SS-IDMS). The certified reference sediment PACS-2 (NRC, Canada) and a candidate reference sediment (P-18/HIPA-1) were extracted using an accelerated solvent extraction (ASE) procedure. For comparison of GC and LC methods an older bottle of PACS-2 was used, whilst a fresh bottle was taken for demonstration of the accuracy of the methods. The data obtained show good agreement between both methods for both the PACS-2 sediment (LC–ICP–IDMS 828±87 ng g–1 TBT as Sn, GC–ICP–IDMS 848±39 ng g–1 TBT as Sn) and the P-18/ HIPA-1 sediment (LC–ICP–IDMS 78.0±9.7 ng g–1 TBT as Sn, GC–ICP–IDMS 79.2±3.8 ng g–1 TBT as Sn). The analysis by GC–ICP–IDMS offers a greater signal-to-noise ratio and hence a superior detection limit of 0.03 pg TBT as Sn, in the sediment extracts compared to HPLC–ICP–IDMS (3 pg TBT as Sn). A comparison of the uncertainties associated with both methods indicates superior precision of the GC approach. This is related to the better reproducibility of the peak integration, which affects the isotope ratio measurements used for IDMS. The accuracy of the ASE method combined with HPLC–ICP–IDMS was demonstrated during the international interlaboratory comparison P-18 organised by the Comité Consultatif pour la Quantité de Matière (CCQM). The results obtained by GC–ICP–IDMS for a newly opened bottle of PACS-2 were 1087±77 ng g–1 Sn for DBT and 876±51 ng g–1 Sn for TBT (expanded uncertainties with a coverage factor of 2), which are in good agreement with the certified values of 1090±150 ng g–1 Sn and 980±130 ng g–1 Sn, respectively.  相似文献   

7.
Severn Sound is a heavily used recreational and beating area in the southeast corner of Georgian Bay, Lake Huron, Canada. Because of the concern over the possible release of tributyltin species (TBT) from antifouling paints on boat hulls and marinas, surveys were carried out in 1989 and 1992 to determine the presence of this species and its degradation products dibutyltin (DBT) and monobutyltin (MBT) in this area. Many fish (pike and young–of–the–year spottail shiners) and sediment samples collected in 1989 contained detectable levels of TBT. A maximum concentration of TBT was recorded in northern pike in the spring to be 240 ng Sn g?1. Maximum levels occurred in marinas during the beginning of the boating season and significantly reduced during the summer and early autumn, although the maximum value of TBT in sediment (392 ng Sn g?1) was observed in the summer of 1989. The seasonal variation of TBT levels was further substantiated in the subsequent 1992 study, in which sediments from three areas in a marina were sampled at monthly intervals from May to October. TBT levels were much higher in May and then generally decreased with time. Mussels (Elliptio complanta) caged in the marina for three months also contained TBT. DBT was frequently detected in the sediments but less frequently in fish and mussels. MBT was generally below detection limits. Plants (macrophytes and cladophora) contained very small amounts of butyltin compounds.  相似文献   

8.
The optimization and application of gas chromatograph coupled with inductively coupled plasma mass spectrometer (GC-ICPMS) (equipped with a commercially available interface) for the speciation of butyltin compounds in freshwater origin sediment and mussel samples is described. Optimization focused on the system parameters that have the greatest effect on signal intensity such as plasma power, ion lenses and make up gas flow (in the interface). Xenon (Xe) containing argon gas (Ar) was applied as tuning gas providing continuous Xe signal for the optimization of system parameters. It was found that plasma power and make up gas are interrelated variables and provide a set of paired optimum values at each power settings. The absolute optimum values obtained at 800 W plasma power and 1.2 L min−1 make up gas flow rate when 7 mm sample depth was adjusted. The optimum settings obtained were then checked by means of a test solution (tetraethyltin dissolved in hexane). Same optimum conditions were found when tin (Sn) transient signals were monitored. Detection limits were calculated for the three species using the optimized system parameters. Detection limits are the following: for monobutyltin (MBT) 5.6 ng Sn kg−1, for dibutyltin (DBT) 6.6 ng Sn kg−1 and for tributyltin (TBT) 3.4 ng Sn kg−1 obtained. Determination of the butyltin compounds were carried out by means of species-specific isotope dilution analysis. The spike solution contained all species investigated but with altered isotopic composition. Each species were enriched in their 119Sn isotope. Concentrations found in Hungarian freshwater origin mussel and sediment samples ranged between 19 and 39 ng g−1for MBT, between 1.2 and 6.3 ng g−1 for DBT and between 1.2 and 3.2 ng g−1 for TBT indicated as Sn in dry weight. Validation of the method was done by means of certified reference materials (BCR CRM 646 and 477). Good agreement was found between certified and experimental values. Normalized deviation (En) was also computed in order to validate the method used. En values obtained ranged between 0.07 and 0.11 for mussel samples and between 0.26 and 0.72 for sediment samples. These values show that isotope dilution-GC-ICPMS methodology is valid for the determination of MBT, DBT and TBT from both types of matrices.  相似文献   

9.
A standard GC-MS instrument with electron impact ionisation has been used to develop a fast, simple and reliable method for the simultaneous determination of monobutyltin (MBT), dibutyltin (DBT) and tributyltin (TBT) in water samples. Isotope dilution analysis (IDA) is used for the determination of species, taking advantage of a commercially available spike solution containing a mixture of MBT, DBT and TBT enriched in 119Sn. Method detection limits for 100-mL samples were between 0.18 and 0.25 ng L−1 for the three butyltin compounds with typical RSD between 2 and 4% at levels between 100 and 10 ng L−1, respectively. Recovery of tin species in spiked samples (natural water, wastewater and seawater) was quantitative. The stability of butyltin compounds in collected seawater samples was also studied. The addition of a 1% (v/v) glacial acetic acid preserved tin species in the samples for at least 5 days at room temperature. The IDA method was finally implemented in a routine testing laboratory and it was subsequently accredited by the Spanish National Accreditation Body according to the requirements of UNE-EN ISO/IEC 17025.  相似文献   

10.
Interferences affecting the determination of butyltin species by sodium tetraethylborate (STEB) derivatisation followed by purge-trap preconcentration were systematically studied using synthetic solutions, natural water samples and sediment extracts. Substances that did not cause interferences included most common cations (apart from those metal ions listed below), anions, metalloids and polar organic compounds. Natural organic matter (NOM) specifically interfered with tributyltin (TBT) due to a mechanism involving partitioning of the butyltin to the hydrophobic portions of the NOM. The metal ions Ag(I) (≥2 μM), Cd(II) (≥2 μM), Cu(II) (≥0.5 μM) interfered predominantly with the determination of monobutyltin (MBT) due to catalytic degradation of the STEB reagent. Pb(II) (≥14 μM) interfered with butyltin determination by an unknown mechanism. Other interferences to the purge-trap method were shown to occur in the presence of chelating agents (e.g. EDTA) or hydrophobic liquids such as diesel fuel. A mixture comprising methanol (MeOH), EDTA and Mn(II) was used to partially mask the effect of interfering NOM and metals. Spike recoveries (mean±S.D. of n=7 different samples) of MBT, dibutyltin (DBT) and TBT in contaminated natural water samples were improved from 70±36,90±11 and 91±24 to 102±10,98±3 and 98±4%, respectively. Spike recoveries (mean±S.D. of n=5 different samples) of MBT, DBT and TBT in aliquots of sediment extracts were improved from 86±17,79±18 and 59±32 to 97±6.2,103±3.6 and 103±5.0%, respectively. The ability to analyse larger aliquots of sediment extracts in the presence of the masking mixture improved the detection limit four-fold if MBT and DBT determination was required and 10-fold if only TBT determination was required.  相似文献   

11.
A new marine sediment certified reference material, NMIJ CRM 7306-a, for butyltin and phenyltin analysis has been prepared and certified by the National Metrological Institute of Japan at the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST). Candidate sediment material was collected at a bay near industrial activity in Japan. After air-drying, sieving, and mixing the material was sterilized with γ-ray irradiation. The material was re-mixed and packaged into 250 glass bottles (15 g each) and these were stored in a freezer at −30 °C. Certification was performed by use of three different types of species-specific isotope-dilution mass spectrometry (SSID–MS)—SSID–GC–ICP–MS, SSID–GC–MS, and SSID–LC–ICP–MS, with 118Sn-enriched organotin compounds synthesized from 118Sn-enriched metal used as a spike. The 118Sn-enriched mono-butyltin (MBT), dibutyltin (DBT), and tributyltin (TBT) were synthesized as a mixture whereas the 118Sn-enriched di-phenyltin (DPhT) and triphenyltin (TPhT) were synthesized individually. Four different extraction methods, mechanical shaking, ultrasonic, microwave-assisted, and pressurized liquid extraction, were adopted to avoid possible analytical bias caused by non-quantitative extraction and degradation or inter-conversion of analytes in sample preparations. Tropolone was used as chelating agent in all the extraction methods. Certified values are given for TBT 44±3 μg kg−1 as Sn, DBT 51 ± 2 μg kg−1 as Sn, MBT 67 ± 3 μg kg−1 as Sn, TPhT 6.9 ± 1.2 μg kg−1 as Sn, and DPhT 3.4 ± 1.2 μg kg−1 as Sn. These levels are lower than in other sediment CRMs currently available for analysis of organotin compounds.  相似文献   

12.
This study was designed to investigate the partitioning and sorptive behaviour of tributyltin(TBT), and its degradation products dibutylitin (DBT) and monobutyltin (MBT), in the aquatic environment. Factorial experiments were undertaken to determine the importance of pH and particulate matter concentration in the sorption of butyltin compounds to solid phases. Results indicate that in freshwaters MBT, and to a lesser extent TBT, will be partitioned towards the particulate phase, whereas DBT exhibits a 50:50 partitioning between particulate and solution phases. In estuarine waters, whilst MBT will almost exclusively sorb on to particulates, TBT will be predominantly in the solid-phase fractions but 10–30% may remain in solution. DBT, in contrast, is solubilized in estuarine waters. A more detailed investigation of TBT sorption and particulate matter concentration was undertaken using adsorption isotherms on different sediment types. The results from batch isotherm tests plotted according to the Freundlich adsorption model revealed that TBT adsorption varied with sediment type, increasing in the order sandy-silt < silty-sand < silty-clay. TBT sorption was found to be reversible, indicating that contaminated sediments may release TBT to overlying waters following sediment distrubance. Interstitial water partitioning studies indicate that TBT predominates in the particulate phase with partition coefficients for TBT higher than for DBT and MBT. The TBT partition coefficient in interstitial waters appears to be related to total organic carbon loadings.  相似文献   

13.
The present work proposes a direct method based on slurry sampling for the determination of zinc and copper in human hair samples by multi-element sequential flame atomic absorption spectrometry. The slurries were prepared by cryogenic grinding and sonication of the samples. The optimization step was performed using univariate methodology and the factors studied were: nature and concentration of the acid solution, amount sample/slurry volume, sonication time, and particle size. The established experimental conditions are the use of a sample mass of 50 mg, 2 mol L− 1 nitric acid solution, sonication time of 20 min and slurry volume of 10 mL. Adopting the optimized conditions, this method allows the determination of zinc and copper with detection limits of 88.3 and 53.3 ng g− 1, respectively, and precision expressed as relative standard deviation (RSD) of 1.7% and 1.6% (both, n = 10) for contents of zinc and copper of 100.0 and 33.3 μg g− 1, respectively. The accuracy was checked and confirmed by analysis of two certified reference materials of human hair. The procedure was applied for the determination of zinc and copper in two human hair samples. The zinc and copper contents varied from 100.0 to 175.6 and from 3.2 to 32.8 μg g− 1, respectively. These samples were also analyzed after complete digestion in a closed system and determination by FAAS. The statistical comparison by t-test (95% confidence level) showed no significant difference between these results.  相似文献   

14.
Xiao Q  Hu B  He M 《Journal of chromatography. A》2008,1211(1-2):135-141
A method based on headspace single drop microextraction (HS-SDME) in combination with gas chromatography-inductively coupled plasma mass spectrometry (GC-ICP-MS) was proposed for the speciation analysis of butyltin compounds in environmental and biological samples. The sodium tetraethylborate (NaBEt4) and sodium tetrahydroborate (NaBH4) were used as the derivatizing reagent for in situ derivatization of the butyltins. For the two derivatizations, the HS-SDME parameters such as organic solvent, drop volume, sample pH, stirring rate, temperature, extraction time and the ionic strength were examined systematically. The analytical performance including the linearity ranges, limits of detection (LODs) and reproducibilities of the two derivatizations were compared under the respective optimized conditions. Derivatization with NaBEt(4) proved to be more sensitive and robust than that with NaBH4, leading to the LODs of 1.4 ng/L for MBT, 1.8 ng/L for DBT and 0.8 ng/L for TBT. The reproducibilities, expressed as relative standard deviations (RSDs), were in the range of 1.1-5.3% (c=1 microg/L, n=3). With tripropyltin (TPrT) as internal standard, HS-SDME-GC-ICP-MS with NaBEt(4) derivatization was applied for the speciation analysis of butyltins in real seawater and shellfish samples. The butyltins found in the real-world samples are 31ng/L MBT, 79 ng/L DBT and 32 ng/L TBT for seawater, and 11.6-30.4 ng/g MBT, 11.8-8.9 ng/g DBT and 12.8-52.6 ng/g TBT for different shellfish samples. For validation, the developed method was also employed for the speciation analysis of butyltins in certified reference material (CRM) of PACS-2 sediment, and the determined values are in a good agreement with the certified values. The developed method is simple, rapid, sensitive, and cost-effective and provides an attractive alternative for butyltins speciation in biological and environmental samples with complex matrix.  相似文献   

15.
Solid-phase microextraction (SPME) and solid-phase extraction (SPE) procedures were coupling with microwave-assisted micellar extraction for organochlorine pesticides residues determination in seaweed samples. They were optimized, compared and discussed.Preliminary experiments were performed in order to study experimental conditions for the extraction of pesticides from spiked seaweed samples with microwave-assisted micellar extraction (MAME) using a non-ionic surfactant (Polyoxyethylene 10 Lauryl Ether). After that, SPME and SPE were used to clean-up and preconcentrate MAME extract prior the analysis by liquid chromatography with photodiode array (PDA) detection.Excellent results were obtained for both procedures. Average pesticide recoveries between 80.5 and 104.3% for MAME-SPME and between 73.9 and 111.5% for MAME-SPE were obtained. Relative standard deviations (RSDs) were lower than 10.3% and 5.3% respectively for all recoveries tested, and LOD between 138–348 ng g− 1 for MAME-SPME and 2–38 ng g− 1 for MAME-SPE were obtained. The method was validated using Soxhlet extraction procedure.Both methods were applied to analyse target organochlorine pesticides in several seaweed samples and results were compared. These results show the great possibilities of combining MAME-SPE-HPLC-UV for the analysis of seaweed samples, improving the selectivity and sensitivity in the determination of organochlorine pesticides analysis for this kind of samples.  相似文献   

16.
A GC-ICP-MS method based on extraction and alkylation of butyltins with sodium tetraethylborate was used to quantitatively assess the fate of these analytes in solutions and sediments following exposure to gamma-irradiation. The effects of a 2.5 Mrad sterilization dose on three butyltin species in both methanolic calibration solutions and in sediment matrices were investigated. Although significant losses of tributyltin (TBT, 90%), dibutyltin (DBT, 100%) and monobutyltin (MBT, 80%) were detected in standard solutions prepared in methanol following gamma-irradiation, no species inter-conversion occurred. Some degradation of TBT (38%) and DBT (32%) but no significant change in MBT content was found using a spiked sediment CRM HISS-1. Conversion DBT to MBT in spiked HISS-1 was deduced. Much smaller degradation of TBT (16% loss) and 10% loss of DBT by conversion to MBT (14% gain) was registered using a sediment blend of PACS-2 and HISS-1 (SOPH). Despite some initial losses of TBT and DBT due to irradiation, better than 2% RSD in both TBT and DBT concentrations measured in twelve different bottles of blended sediment SOPH were obtained, indicating the material may be considered homogeneous for these analytes. Results from a long-term five-year stability study of PACS-2 show that all three butyltins are stable during storage at 4 degrees C followed with 2.5 Mrad minimum dose of gamma-irradiation sterilization treatment.  相似文献   

17.
The yellow compounds pyoverdins were isolated from Pseudomonas chlororaphis, which was isolated from mud in Japan. Degradation of tributyltin (TBT), dibutyltin (DBT), and monobutyltin (MBT) by pyoverdin (20 mg) was carried in sea water (30 ml) containing a 6 µg l?1 concentration of TBT, DBT, and MBT at 24 °C for 24 h in aerobic conditions. TBT, DBT, and MBT in sea water were analyzed by gas chromatography–mass spectrometry in selected ion monitoring mode. DBT in sea water was degraded to MBT by pyoverdins isolated from P. chlororaphis. However, TBT and MBT in sea water was not degraded by pyoverdins. The optimum degradation of DBT in sea water was at pH 4.8–8.2, at a temperature 25–30 °C. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
The characterisation of a laboratory quality control material (QCM) for dibutyltin (DBT) and tributyltin (TBT) in sewage sludge is described. The reference values were determined by the use of two different types of isotope-dilution mass spectrometry: gas chromatography–mass spectrometry and gas chromatography–inductively coupled plasma mass spectrometry. To avoid possible analytical errors such as non-quantitative extraction and species degradation during sample preparation, different extraction methods were tested (microwave- and ultrasound-assisted extraction and mechanical stirring). The reference values were based on the unweighted means of results from the homogenisation and characterisation studies. The reference values obtained were 1,553 ± 87 and 534 ± 38 ng Sn g-1 for DBT and TBT, respectively. In the uncertainty budget estimation, the sample inhomogeneity and between-method imprecision were taken into account. The concentrations of DBT and TBT in QCM are similar to those in the harbour sediment certified reference material PACS-2. Likewise, the levels of DBT and TBT are in the range of these compounds normally present in sewage sludge worldwide. In the future, the QCM will be used for an intercomparison study on DBT and TBT in sewage sludge, and as a day-to-day QCM during studies concerning the application of sewage sludge as an additive to artificial soil or as a raw material in civil engineering construction.  相似文献   

19.
A method based on Headspace solid-phase microextraction (HS-SPME, with a 100 μm PDMS-fiber) in combination with gas-chromatography and pulsed flame-photometric detection (GC-PFPD) has been investigated for simultaneous determination of eight organotin compounds. Monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), monophenyltin (MPhT), and the semi-volatile diphenyltin (DPhT), triphenyltin (TPhT), monooctyltin (MOcT), and dioctyltin (DOcT) were determined after derivatization with sodium tetraethylborate. The conditions used for the extraction and preconcentration step were optimised by experimental design methodology. Tripropyltin (TPrT) and diheptyltin (DHepT) were used as internal standards for quantification of volatile and semi-volatile organotin compounds, respectively. The analytical precision (RSD) for ten successive injections of a standard mixture containing all the organic tin compounds ranged between 2 and 11%. The limits of detection for all the organotin compounds were sub ng (Sn) L−1 in water and close to ng (Sn) kg−1 in sediments. The accuracy of the method was evaluated by analysis of two certified reference material (CRM) sediment samples. The HS-SPME–GC–PFPD was then applied to the analysis of three harbour sediment samples. The results showed that headspace SPME is an attractive tool for analysis of organotin compounds in solid environmental matrices.  相似文献   

20.
In this paper, a sensitive flow injection chemiluminescence system luminol–myoglobin was described for determining femtogram nitrite. Nitrite bound myoglobin producing the ferric heme nitrite complexes, which catalyzed the electron transfer of luminol to myoglobin leading to fast chemiluminescence. The chemiluminescence intensity in the presence of nitrite was remarkably enhanced compared with that in the absence of it. Under the optimum reaction conditions the chemiluminescence increment produced was proportional to the concentration of nitrite in the range of 0.05 pg ml− 1–1.0 ng ml− 1 (R2 = 0.9991), with a detection limit (3σ) of 20.0 fg ml− 1. At the flow rate of 2.0 ml min− 1, the whole process including sampling and washing could be completed in 0.5 min offering the sampling efficiency of 120 h− 1 accordingly, and the relative standard deviation (RSD) was less than 2.60% (n = 5). It was satisfactory for the application to determine nitrite in human urine samples, and the possible mechanism was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号