首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of acrylonitrile (AN) in miniemulsion was reported. PET-RAFT polymerization of acrylonitrile (AN) was successfully accomplished with 4-cyanopentanoic acid dithiobenzoate (CPADB) as chain transfer agent (CTA), sodium dodecyl sulfate (SDS) as emulsifier, hexadecane (HD) as co-stabilizer and TiO2 as photocatalyst at 25?°C. The linear first-order kinetic plots were observed in miniemulsion with different amounts of SDS. Excellent temporal control was demonstrated by switching between ON/OFF states multiple times, and the prepared PAN macro-CTA was used successfully to perform the chain extension experiments, indicating high retention of chain end functionality. Furthermore, the obtained PAN was amidoximated with NH2OH·HCl. The Cd2+ was extracted with amidoxime (–C(NH2)=NOH) from aqueous solutions. The maximum adsorption of 98.6% Cd2+ with 400?mg of the adsorbent was observed at pH 6.0 and an initial Cd2+concentration of 4?mmol/L.  相似文献   

2.
The composite ion exchangers were tested for their ability to remove UO2 2+ from aqueous solutions. Polyacrylonitrile (PAN) composites having natural zeolite, clinoptilolite, and synthetic zeolite, zeolite X, were used as an adsorbents. The influences of pH, U(VI) concentration, temperature and contact time on the sorption behavior of U(VI) were investigated in order to gain a macroscopic understanding of the sorption mechanism. The optimum adsorption conditions were determined for two composites. The sorption behaviors of uranium on both composites from aqueous systems have been studied by batch technique. Parameters on desorption were also investigated to recover the adsorbed uranium.  相似文献   

3.
The polyethylene (PE) adsorbents were prepared by a radiation-induced grafting of acrylonitrile (AN), acrylic acid (AA), and the mixture of AN/AA onto PE film, and by subsequent amidoximation of cyano groups of poly-AN graft chains. With an increase of AA composition in AN/AA monomer mixture, the water uptake of the grafted polyethylene film increased. In AN/AA mixture, the maximum adsorption of UO2+2 was observed in the adsorbent with a ratio of AN/AA (50/50, mol%) in copolymer. The amidoxime, carboxyl, and amidoxime/carboxyl groups onto PE acted as a chelating site for the selected UO2+2. The complex structure of polyethylene with three functional groups and UO2+2 was confirmed by Fourier Transform Infrared (FTIR) spectroscopy.  相似文献   

4.
The adsorption of naturally occurring radionuclides (UO2 2+, Tl+, Pb2+, Ra2+, Bi3+ and Ac3+) onto zeolite (Z) and polyacrylamide-zeolite composite (PAA-Z) and its modified composition by phytic acid (Z-Phy and PAA-Z-Phy) were investigated. Adsorption parameters were derived from the Langmuir and Freundlich fits to adsorption isotherms of the ions studied. The adsorption isotherms were of L and H types. The adsorption capacity of Z decreased by PAA inclusion, but the Phy modification of PAA-Z increased the capacity back to that of Z. The Phy modification made the adsorption spontaneity at least ten times better than in the absence of Phy. This investigation showed that the zeolite, as one of the most abundant natural materials and commonly used adsorbent can also be used for the removal of UO2 2+ and, in the PAA-Z form, of the studied radionuclides. The usage of Z, as PAA-Z and its Phy modification provide research materials which possess adequate practicality and effectiveness in studies of adsorption. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Composite of polyacrylamide-bentonite (PAA-B) was prepared by direct polymerization in a suspension of bentonite (B), the composite was then modified by phytic acid (PAA-B-Phy). The parameters related to adsorption of UO2 2+ in absence and presence of 0.01M CaCl2 and of natural radionuclides (Tl+, Pb2+, Ra2+ and Ac3+ in a leaching solution) onto PAA-B and PAA-B-Phy, and thermodynamics of the adsorption were investigated. Adsorption isotherms were of L and H types for the adsorption of UO2 2+ onto PAA-B and PAA-B-Phy, whilst for Tl+, Pb2+, Ra2+ and Ac3+ they were of C type for both adsorbents. Langmuir equilibrium constants for the adsorption of all studied ions onto PAA-B-Phy were significantly higher than those found for PAA-B. The thermodynamic parameters indicated that adsorption reactions are spontaneous in terms of adsorption free enthalpy. The composite of PAA-B and its modification by Phy have been used for the first time in this study. It is concluded that the composites can be practically used for adsorption and applied as adsorbent of radionuclides.  相似文献   

6.
Composite of polyacrylamide-bentonite (PAA-B) was prepared by direct polymerisation of PAA in a suspension of bentonite (B). Adsorption and thermodynamic features of phytic acid (Phy) adsorption onto B, PAA and PAA-B, and those of Fe3+, Zn2+, UO2 2+ adsorption onto PAA-B and its modification by Phy (PAA-B-Phy) have been investigated. The reusability, storagability, ion selectivity and recoverability of sorbed ions with 1 M HCl have also been considered.The chemical and physical structure of adsorbents has been characterised by means of FT-IR and XRD. All adsorption isotherms for Phy and the ions were L-type of the Giles classification except, the one which is S type for adsorption of Phy onto PAA. The maximum adsorption capacities for the ions adsorbed were in order of UO2 2+ > Fe3+ > Zn2+ for PAA-B and Zn2+ > Fe3+ > UO2 2+ for PAA-B-Phy. Langmuir equilibrium constants for the adsorption of ions onto PAA-B-Phy were significantly higher than those found for PAA-B; the magnitude of increase for UO2 2+ was about 100. The thermodynamic parameters indicated that adsorption reactions are spontaneous in terms of adsorption free enthalpy.The chemical structure of PAA-B-Phy was not changed at the end of the studies of reusability and storagability. The composite was selective for UO2 2+ of the ions of interest.The composite of PAA-B and its modification by Phy have been used for the first time in this investigation. It is proposed that the composites can be practically used in the investigations and applications of adsorption.  相似文献   

7.
SiO2‐PAN nanoparticles has been synthesized by reacting silica nanoparticles with 3‐aminopropyltriethoxysilane, formaldehyde and 1‐(2‐pyridylazo)‐2‐naphthol and characterized by FT‐IR and SEM which were used as new sorbent for the preconcentration of trace amount of Pb2+ from various samples. Conditions of the analysis such as preconcentration factor, effect of pH, sample volume, shaking time, elution conditions and effects of interfering ions for the recovery of analyte were investigated. The adsorption capacity of the nanometer SiO2‐PAN was found to be 168.34 μmol/g at optimum pH and the detection limit (3δ) was 0.63 µg/L. The extractant showed rapid kinetic sorption. The adsorption equilibrium of Pb2+ on the nanometer SiO2‐PAN was achieved within 15 min. Adsorbed Pb2+ was easily eluted with 6 mL of 4 mol·L?1 hydrochloric acid. The maximum preconcentration factor was 50. The method was applied to determine trace amounts of Pb2+ in different samples (water and food samples).  相似文献   

8.
Photo-mediated atom transfer radical polymerization (ATRP) of acrylonitrile (AN) was carried out at 25°C in N,N-dimethyl formamide (DMF) with aniline as photoinitiator. Polyacrylonitrile (PAN) with predictable average molecular weight and narrow molecular weight distribution was synthesized with 2-Bromopropionitrile (BPN) as ATRP initiator and FeCl3·6H2O/Triphenylphosphine (PPh3) as the catalyst. The obtained kinetics showed that the photoinduced Fe-mediated ATRP of AN provided a route to synthesize well defined PAN with narrow molecular weight distribution (Mw/Mn). The living character of photoinduced Fe-mediated ATRP of AN was verified by the linear increase of molecular weights with monomer conversion and the molecular weights are in good agreement with the theoretic values. In addition, the chain extension experiments were successfully conducted under the same conditions. The periodic light on-off process was investigated for the photoinduced Fe-mediated ATRP of AN. The obtained PAN was characterized by 1H nuclear magnetic resonance and gel permeation chromatography. The brominated PAN was used to perform chain-extension with AN as macroinitiator in order to verify the living nature of photoinduced ATRP of AN-Br.  相似文献   

9.
Based on the photoinduced photothermal, photoelectric, and photocatalytic effects of black phosphorus (BP) nanosheets, a BP‐PAO fiber with enhanced uranium extraction capacity and high antibiofouling activity is fabricated by compositing BP nanosheets into polyacrylamidoxime (PAO). The photothermal effect increases the coordination interaction between UO22+ and the functional amidoxime group, and the photoelectric effect produces the surface positive electric field that exhibits electrostatic attraction to the negative [UO2(CO3)3]4?, which all increase the capacity for uranium adsorption. The photocatalytic effect endows the adsorbent with high antibiofouling activity by producing biotoxic reactive oxygen species. Owing to these three photoinduced effects, the photoinduced BP‐PAO fiber shows a high uranium adsorption capacity of 11.76 mg g?1, which is 1.50 times of the PAO fiber, in bacteria‐containing natural seawater.  相似文献   

10.
In the present study, we successfully prepared two different electrospun polyacrylonitrile (PAN) based-activated carbon nanofiber (ACNF) composites by incorporation of well-distributed Fe2O3 and Co3O4 nanoparticles (NPs). The influence of metal oxide on the structural, morphological, and textural properties of final composites was thoroughly investigated. The results showed that the morphological and textural properties could be easily tuned by changing the metal oxide NPs. Even though, the ACNF composites were not chemically activated by any activation agent, they presented relatively high surface areas (SBET) calculated by Brunauer–Emmett–Teller (BET) equation as 212.21 and 185.12 m2/g for ACNF/Fe2O3 and ACNF/Co3O4 composites, respectively. Furthermore, the ACNF composites were utilized as candidate adsorbents for CO2 and CH4 adsorption. The ACNF/Fe2O3 and ACNF/Co3O4 composites resulted the highest CO2 adsorption capacities of 1.502 and 2.166 mmol/g at 0 °C, respectively, whereas the highest CH4 adsorption capacities were obtained to be 0.516 and 0.661 mmol/g at 0 °C by ACNF/Fe2O3 and ACNF/Co3O4 composites, respectively. The isosteric heats calculated lower than 80 kJ/mol showed that the adsorption processes of CO2 and CH4 were mainly dominated by physical adsorption for both ACNF composites. Our findings indicated that ACNF-metal oxide composites are useful materials for designing of CO2 and CH4 adsorption systems.  相似文献   

11.
The phosphorylated polyacrylonitrile‐based (P‐PAN) nanofibers were prepared by electrospinning technique and used for removal of Cu2+, Ni2+, Cd2+, and Ag+ from aqueous solution. The morphological and structural properties of P‐PAN nanofibers were characterized by scanning electron microscope and Fourie transform infrared spectra. The P‐PAN nanofibers were evaluated for the adsorption capacity at various pH, contact time, and reaction temperature in a batch system. The reusability of P‐PAN nanofibers for the removal of heavy metal ions was also determined. Adsorption isotherms and adsorption kinetics were also used to examine the fundamental adsorption properties. It is found that the P‐PAN nanofibers show high efficiency, and the maximal adsorption capacities of metal ions as calculated from the Langmuir model were 92.1, 68.3, 14.8, and 51.7 mg/g, respectively. The kinetics of the heavy metal ions adsorption were found to follow pseudo‐second‐order rate equation, suggesting chemical adsorption can be regarded as the major factor in the adsorption process. Sorption/desorption results reveal that the obtained P‐PAN nanofibers can remain high removal efficiency after four cycles.  相似文献   

12.
The TiO2 nanoparticles are electrospun with polyacrylonitrile (PAN) polymer solution onto the discharged battery coal (DBC) electrode and the results are evaluated as a supercapacitor. The morphology and chemical composition of the synthesized TiO2 nanoparticles and PAN+TiO2 nanocomposite fibers were characterized by Scanning electron microscopy, thermogravimetry and FTIR analysis. Supercapacitor measurements and electrochemical characterizations of the electrodes examined by cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical measurements showed that the best current value was obtained from PAN and TiO2 coated DBC. The performances of both PAN and PAN+TiO2 coated DBC electrodes were investigated as supercapacitors. PAN+TiO2/DBC showed the best specific capacitance value of 156.00 F g−1 and PAN/DBC showed 74.93 F g−1. In addition, PAN+TiO2/DBC exhibited reliable stability performance over 2000.00 cycles.  相似文献   

13.
Polyacrylonitrile (PAN) was grafted from surfaces of chloro‐modified silica‐gel with their surface chlorines as initiation sites, using an iron (III)‐mediated surface‐initiated atom transfer radical polymerization (ATRP) with activators regenerated by electron transfer (SI‐ARGET ATRP) method. The graft reaction exhibits first‐order kinetics with respect to the polymerization time in the low‐monomer‐conversion stage. The conversion of monomer (C%) and the percentage of grafting (PG%) increased with increasing of the polymerizing time and reached 23 and 730% after a polymerizing time of 24 hr, respectively. Hydroxylamine (NH2OH·HCl) was used to modify the cyano groups of SG‐g‐PAN to obtain amidoxime (AO) groups. The AO SG‐g‐PAN was used to remove Hg2+. The adsorption kinetics indicated that the pseudo‐second‐order model was more suitable to describe the adsorption kinetics of AO SG‐g‐PAN for Hg2+. The adsorption isotherms demonstrated that Langmuir model was much better than Freundlich model to describe the isothermal process. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A flow injection analysis system incorporating a microcolumn of nanometer-sized TiO2 loaded with 1-(2-pyridylazo)-2-naphthol (PAN) has been used for the development of an on-line multi-element method for simultaneous separation and preconcentration and subsequent determination of Cu2+, Co2+, Cr3+, Y3+, Yb3+ and Bi3+ by ICP-AES. Effects of pH, sample flow rate and volume, elution conditions, adsorption capacity and interfering ions on analyte recovery were examined. The adsorption capacity of nanometer-sized TiO2 loaded with PAN was 4.73, 18.57, 3.81, 6.14, 4.52 and 20.35mgg–1 for Cu2+, Cr3+, Y3+, Yb3+, Co2+ and Bi3+, respectively. The method has been applied to the analysis of trace elements in standard reference biological samples, and the results are in good agreement with the certified values.  相似文献   

15.
Tin dioxide and its antimony doped counterpart were synthesized using traditional sol–gel procedure. The metal oxides were then turned into composites by mixing them with polyacrylonitrile (PAN) and composite spheres ready for use in traditional column applications were obtained. The characterization of materials was investigated by X-ray diffraction, scanning electron microscopy–energy dispersive X-ray, surface area, point of zero charge and thermal analyses. Static batch experiments showed that the antimony doped tin dioxide–PAN (Sb doped SnO2–PAN) is an effective material for nickel removal and the composite maintains its good metal uptake properties in dynamic column conditions. The composite showed a high nickel uptake capacity of 9 mmol/g in 0.1 M NaNO3 solution. It was observed that the ion exchange kinetics of antimony doped tin dioxide (Sb doped SnO2) was remarkably fast for 57Co and 63Ni ions but turning the material into PAN composite significantly decreased the materials kinetic properties.  相似文献   

16.
Fe(0) was firstly used as single‐electron transfer‐living radical polymerization catalyst for acrylonitrile polymerization using carbon tetrachloride as initiator, hexamethylenetetramine as N‐ligand, and N,N‐dimethylformamide as the solvent at 65 °C. First‐order kinetic studies indicated that this polymerization proceeded in a “living”/controlled manner. The living nature of the polymerization was also confirmed by chain extension of methyl methacrylate with polyacrylonitrile (PAN) as macroinitiator. Furthermore, PAN was modified with NH2OH·HCl to generate amidoxime groups for extraction of heavy metal ions (Hg2+) from aqueous solutions. Fourier transformed infrared spectroscopy was performed to characterize chemical composition and structure. The adsorption property of Hg2+ was investigated at different pH values of aqueous solutions and distilled water. The maximal saturated adsorption capacity of Hg2+ was 4.8 mmol g?1. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
The stability constants (Kf) for the complexation reactions of Cr3+, Mn2+ and Zn2+ metal cations with macrocyclic ligand, 15-crown-5 (15C5), in acetonitrile (AN), ethanol (EtOH) and also in their binary solutions (AN–EtOH) were determined at different temperatures, using conductometric method. 15C5 forms 1:1 complexes with Cr3+, Mn2+ and Zn2+ cations in solutions. A non-linear behaviour was observed for changes of logKf of the metal ion complexes versus the composition of the mixed solvent. The order of stability of the metal–ion complexes in pure AN and in a binary solution of AN–EtOH (mol% AN?=?52) at 25?°C was found to be: (15C5Zn)2+?>?(15C5·Mn)2+?>?(15C5·Cr)3+, but in the case of pure EtOH at the same temperature, it changes to: (15C5·Zn)2+?>?(15C5·Cr)3+?>?(15C5·Mn)2+. The results also show that the stability sequence of the complexes in the other binary solutions of AN–EtOH (mol% AN?=?26 and mol% AN?=?76) varies in order: (15C5·Cr)3+?~?(15C5·Zn)2+?>?(15C5·Mn)2+. The values of the standard thermodynamic quantities (ΔHC°, ΔSC°) for formation of (15C15-Cr3+), (15C5-Mn2+) and (15C5-Zn2+) complexes were obtained from the temperature dependence of the stability constants and the results show that the thermodynamics of complexation reactions is affected by nature and composition of the solvent systems and in most solution systems, the complexes are enthalpy stabilized but entropy destabilized.  相似文献   

18.
ZnTi_xFe_(2–x)O_4 and ZnTi_(0.6)Fe_(1.4)O_4/Carbon nanotubes(ZT_(0.6)F_(1.4)/CNTs) composites were prepared by chemical co-precipitation method. The composition, microstructure, magnetic property, adsorption and photocatalytic activity of the prepared samples were characterized by means of modern analytical techniques. The results indicated that ZT_(0.6)F_(1.4)/CNTs composites not only held the original special structure and excellent adsorption properties of CNTs, but also had suitable magnetic property and excellent photocatalytic activity. The removal rate of the samples on Rhodamine B(RhB) depended on the adsorption of CNTs and the photocatalytic degradation of ZT_(0.6)F_(1.4) in the composites. The maximum adsorption amount(q_m) of ZT_(0.6)F_(1.4)/CNTs with the mass ratios of ZT_(0.6)F_(1.4) to CNTs(mZ/C)=1 was up to 17.153 mg g~(–1) for RhB, its adsorption behavior was in accord with Langmuir model, and its photocatalytic degradation activity on RhB had a positive correlation with the content of ZT_(0.6)F_(1.4) in the sample. The experimental results indicate that the total removal rate of composite with mZ/C=1 on RhB was more than 95% and the composite had good decontamination capability on industrial dye wastewater. In addition, the samples can be recovered conveniently, activated easily and had good performance for recycling.  相似文献   

19.
The polyethylene (PE) membrane was prepared by the radiation-induced grafting of acrylonitrile (AN) onto PE hollow fiber and by the subsequent amidoximation of cyano groups in poly-AN graft chains. The adsorption characteristics of the chelating hollow fiber membrane was examined as the solution of UO2 2+ permeated across the chelating hollow fiber membrane. The inner and outer diameter increased with an increasing grafting yield, whereas, the pure water flux and pore diameter decreased with an increasing grafting yield. The adsorption of UO2 2+ by the chelating hollow fiber membranes increased with an increasing amidoxime group. The adsorbed amount of UO2 2+ in the uranyl acetate solution was higher than that in the uranyl nitrate solution. The adsorbed amount of UO2 2+ is higher than that of Cu2+ when the solution of UO2 2+ and Cu2+ permeated across the chelating membrane, respectively. The adsorption characteristics of UO2 2+ by the amidoxime group-chelating fiber membrane in the presence of Na1+ and Ca2+ showed a high selectivity for UO2 2+ even though there was a high concen-tration of Na1+ and Ca2+ in the inlet solution.  相似文献   

20.
 Ind2Y(μ-Et)2AlEt2 and Ind2LnN(i-Pr)2 (Ln = Y, Yb) were used as a single-component catalyst for the polymerization of acrylonitrile (AN) respectively. The regularity of polymerization of AN and stereoregularity of polyacrylonitrile (PAN) were also studied in both cases. Both catalysts can produce PAN with molecular weight from I0,000to 30,000. In addition, the catalytic activity and molecular weights were increased by the addition of PhONa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号