首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 369 毫秒
1.
Summary PM10 and PM2.5 samples were collected simultaneously in Beijing, China, and analyzed by INAA and ICP-MS. Seasonal variations of the concentrations of ambient particles and their elemental compositions were found. The main sources of PM10 and PM2.5 in spring were the crust, coal burning and vehicle exhaust, in which the former was significant. During a strong dust storm, the concentrations of the crustal elements in PM10 and PM2.5 increased remarkably, but the concentrations of some anthropogenic elements decreased. The enrichment factors of these anthropogenic elements also decreased sharply during the dust storm, which indicated that they were mostly originated from local anthropogenic pollution and diluted by the huge amount of dust.  相似文献   

2.
As part of a randomised controlled residential intervention study, levoglucosan (LG) was investigated as a biomarker for wood smoke exposure. This study was conducted among 33 children living in homes that used wood stoves for residential heating. Indoor fine particulate matter (PM2.5) concentrations and corresponding urine samples from participants were collected during pre- and a post-intervention winter sampling periods. Interventions included the installation of an air filtration unit and a wood stove change out. Homes and children assigned to a placebo filter served as the control condition. Results showed a strong reduction in indoor PM2.5 among the air filter homes (≈58% reduction), whereas the wood stove change out homes did not have a significant PM2.5 reduction from pre- to post-intervention observations. Children living in the air filter homes did not show a corresponding reduction in urinary LG concentrations. Further analysis did not show an association between overall changes in indoor PM2.5 concentrations and changes in urinary LG concentrations. These findings suggest that urinary LG is not a reliable indicator of wood smoke exposure in residential wood heating settings.  相似文献   

3.
In this paper, a sensitive biotin–streptavidin (BS)-ELISA was developed for determining the polybrominated diphenyl ethers in PM2.5. For establishing this proposed BS-ELISA, we prepared the biotinylated antibody primarily. And for reducing the background interference, some in?uencing factors and procedures for this immunoassay were also discussed and optimised. Under the optimal conditions, the IC50 = 0.53 ng/mL; IC10 was 0.002 ng/mL; and the results were almost consistent with those using the gas chromatography and electron capture detection (GC-ECD). Less procedures and simpler sample preparation were required for this method compared with the GC-ECD. The results showed that the highest value of BDE-47 concentration occurred in December, which might re?ect the combination of heating and industrial pollution. In our analysis, we studied the Pearson correlations between BDE-47/PM2.5 and gaseous pollutants (such as NO2, SO2, CO, O3, PM10 and PM2.5). BDE-47 showed a higher correlation with NO2 than that with PM10, PM2.5 and SO2, which implied that the BDE-47 emission process might be accompanied by the emission of NO2. Moreover, during the Spring Festival, the concentration of BDE-47 in PM2.5 decreased significantly, whereas the PM2.5 changed little. This suggested factories and vehicles might be the major contributors to BDE-47 emissions (but not to PM2.5).  相似文献   

4.
A Gent stacked filter unit sampler was used to collect air particulate matter (APM) in separate coarse (PM2.5–10) and fine (PM2.5) size fractions, at a sub-urban site in Lisbon, Portugal. The sampling was done during the year 2001 and two daily samples were taken per week. The filters were analyzed for particulate mass by instrumental neutron activation analysis (INAA). The chemical analysis of APM levels and the study of the atmospheric dynamics by back-trajectories showed that most of the PM2.5 and PM2.5–10 peaks events were associated with air masses transport from the Saharan desert. High mineral load in ambient particulate matter levels were registered during the Saharan dust outbreaks. The accuracy of INAA to measure Fe, Sc and Sm was evaluated by NIST filter standards, revealing results with an agreement of ± 10%. This method constituted an important tool to identify these events.  相似文献   

5.
The use of ion chromatography (IC) in conjunction with ultrasonic extraction is described for the routine analysis of water-soluble major inorganic ions and organic acids in atmospheric fine particles (PM2.5). Both the extraction method and the IC analysis were validated using NIST SRM 1648 (urban particulate matter). In addition, the reliability of the IC method was established by intercomparison of results obtained with those from suitable alternative analytical techniques (atomic absorption spectrometry (AAS), proton-induced X-ray emission (PIXE) spectrometry, and UV-Visible spectrophotometry). The validated IC method was successfully applied for field monitoring of PM2.5 particles collected in Singapore over an extended period of time. The IC analysis revealed that the concentrations of individual ions were in the order, SO42− > NH4+ > NO3 > Na+ > K+ > Cl, respectively. Among the major ionic components, SO42− contributed 50% to the measured water-soluble aerosol mass followed by NH4+ (16.5%) and NO3 (9.0%). The cations Na+, K+, Mg2+, and Ca2+ accounted for 24% of the total water-soluble mass. The IC analysis was performed to quantify the organic acids, which typically account for a small fraction of water-soluble organic compounds in PM2.5. Oxalate was found to be the dominant species among the organic acids measured in this work.  相似文献   

6.
Air quality monitoring could potentially improve exposure estimates for use in epidemiological studies. We investigated air quality by monitoring concentrations of 222Rn near the ground and particulate matter (PM) with an aerodynamic diameter less than or equal to 10 μm (PM10) and 2.5 μm (PM2.5) for Bucharest-Magurele periurban area. Atmospheric radon concentrations have been continuously monitored near the ground at 1 m height as well as at 10 m height. This paper presents time-series of radon concentrations monitoring in air near the ground measured during 1 January 2011–1 January 2012 by use of solid state nuclear track detectors SSNTD CR-39, exposed for 10 days periods. The daily average atmospheric radon concentration near the ground registered at 1 m height was found to be in range of 40.25 ± 7.53 Bq/m3, which was comparable with the daily average radon concentration of 44.92 ± 9.94 Bq/m3 recorded for period 1 August 2011–20 December 2011 at 10 m height by AlphaGUARD Radon monitor. Also, was done a comparative analysis of spatio-temporal variations in time series of outdoor radon concentration and PM in two size fractions (PM10 and PM2.5) in Bucharest Magurele area for 2011 year. The predominant recorded component in PM10 was PM2.5. Observational results show that recorded yearly average PM2.5 and PM10 concentrations were 35.96 μg/m3 and 40.91 μg/m3, respectively. The average ratio of PM2.5/PM10 was 87.9 % at this sampling site. However, in densely populated Bucharest urban and suburban areas the mean daily EC limit values for PM10, PM2.5 and attached 222Rn are frequently exceeded leading to serious public concern during the last years. The ambient air pollution measurements like as PM10 and PM2.5 levels are used as a proxy for personal exposure levels. Have been investigated also meteorological effects on the temporal patterns of atmospheric radon and particle matter.  相似文献   

7.
Size fractionated PM2.5 and PM2.5?C10 airborne particulates collected from the airport housing society site in Rawalpindi were characterized using the non destructive ion beam analysis method. Proton induced X-ray emission and Proton induced gamma ray emission were employed to quantify 28 trace elements in fine and coarse filter samples. The average PM2.5 and PM2.5?C10 masses were found to be 15.7 and 144???g/m3, respectively which, when combined exceed the Pakistani limit for PM10 of 100???g/m3. The average black carbon (BC) content was found to be 3.49 and 5.95???g/m3 corresponding to 23.8 and 4.30% of the fine and coarse masses, respectively. The reconstructed mass (RCM) was calculated for both particle modes using 5 pseudo sources, namely soil, sulfate, smoke, sea salt and BC. It was found that 5 sources could account for 80.6 and 49.0% of the fine and coarse masses, respectively. The low value of RCM for the coarse mode may imply a much higher organic content. The major sources contributing to the fine mode were soil, sulfate and BC. Similarly for the coarse mass fraction it was found that soil was the major source whereas the sulfate and BC sources did not contribute as much.  相似文献   

8.
Two field measurements for atmospheric fine particles were conducted in Baoan district of Shenzhen during the summer and winter in 2004. Totally 30 sets of 24 h samples were collected, and then the mass concentrations and chemical compositions were determined. The seasonal varia- tions and secondary pollution characteristics of fine particles during the sampling periods were dis-cussed with meteorological factors. The results show that seasonal variations of atmospheric particles are significant in Shenzhen. The average mass concentrations of PM2.5 and PM10 in summer were 35 μg·m-3 and 57 μg·m-3, respectively, and those in winter were 99 μg·m-3 and 135 μg·m-3, respec-tively. The concentrations of both PM2.5 and PM10 in winter increased 184% and 137%, respectively, compared to those in summer. PM2.5 accounted for 61% and 75% of PM10 in summer and in winter, respectively, indicating severe fine particle pollution in Shenzhen. During the summer and winter sampling periods, the mean OC/EC ratios were 3.4 and 1.6, respectively. The estimated secondary organic carbon (SOC) averagely accounted for 56% and 6% of the total OC in summer and in winter, respectively, which implies a major contribution of SOC to OC in summer. During the continuous high temperature period in summer, both the concentrations and fractions of secondary aerosol compo-nents in PM2.5 were highly elevated, suggesting severe secondary pollution again. The prevailing wind was from South China Sea in summer, and the air quality was good. The prevailing wind in winter was from Mainland China to the north, and the polluted air mass led to poor air quality.  相似文献   

9.
Evaluation of airborne particles at the Alhambra monument in Granada, Spain   总被引:1,自引:0,他引:1  
As a part of an ongoing investigation regarding the air quality at the Alhambra monument (UNESCO World Cultural Heritage), indoor and outdoor atmospheric aerosols (PM1 and PM10-1) and pollutant gases (O3, NO2, SO2 and NH3) were studied during summer and winter. Bulk elements, ionic compounds and black carbon (BC) in aerosols were analyzed with X-ray fluorescence spectrometry, ion chromatography and aethalometry/reflectometry, respectively. Natural PM10-1 aerosols, such as carbonate-rich soil and sea salts, reacted with a typical urban atmosphere, producing a mixture of particulates with diverse chemical composition. The content/formation of secondary inorganic aerosols depended on the air temperature and absolute humidity. Ratios of typical mineral elements (i.e., Ti/Fe and Si/Fe) showed that Saharan dust events contribute to the composition of the observed mineral aerosol content. BC, V and Ni originated from diesel exhaust, while Cu, Cr, Pb and Zn came mainly from non-exhaust vehicular emissions. Weathering phenomena, such as blackening and pigment discoloration, which could arise from gradual aerosol deposition indoors, are discussed.  相似文献   

10.
Novel electrospun polyacrylonitrile (PAN) nanofibrous membranes were prepared by using heat-press lamination under various conditions. The air permeability and the burst-pressure tests were run to select the membranes for point-of-use air and water cleaning. Membrane characterization was performed by using scanning electron microscopy, contact angle, and average pore size measurements. Selected membranes were used for both air dust filtration and cross-flow water filtration tests. Air dust filter results indicated that electrospun PAN nanofibrous membranes showed very high air-dust filtration efficiency of more than 99.99 % in between PM0.3 and PM2.5, whereas cross-flow filtration test showed very high water permeability over 600 L/(m2hbar) after 6 h of operation. Combining their excellent efficiency and water permeability, these membranes offer an ideal solution to filter both air and water pollutants.  相似文献   

11.
A robust microwave-assisted acid digestion procedure followed by inductively coupled plasma-mass spectrometry (ICP-MS) was developed to quantify rare earth elements (REEs) in fluidized-bed catalytic cracking (FCC) catalysts and atmospheric fine particulate matter (PM2.5). High temperature (200 °C), high pressure (200 psig), acid digestion (HNO3, HF and H3BO3) with 20 min dwell time effectively solubilized REEs from six fresh catalysts, a spent catalyst and PM2.5. This method was also employed to measure 27 non-REEs including Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Cd, Cs, Ba, Pb and U. Complete extraction of several REEs (Y, La, Ce, Pr, Nd, Tb, Dy and Er) required HF indicating that they were closely associated with the aluminosilicate structure of the zeolite FCC catalysts. Internal standardization using 115In quantitatively corrected non-spectral interferences in the catalyst digestate matrix. Inter-laboratory comparison using ICP-optical emission spectroscopy (ICP-OES) and instrumental neutron activation analysis (INAA) demonstrated the applicability of the newly developed analytical method for accurate analysis of REEs in FCC catalysts. The method developed for FCC catalysts was also successfully implemented to measure trace to ultra-trace concentrations of La, Ce, Pr, Nd, Sm, Gd, Eu and Dy in ambient PM2.5 in an industrial area of Houston, TX.  相似文献   

12.
ZnO homojunction light emitting device (LED) with n-ZnO:Ga/p-ZnO:N structure was fabricated on sapphire substrate by metal organic chemical vapor deposition. The reproducible p-type ZnO:N layer with hole concentration of 1.29 × 1017 cm−3 was formed with NH3 as N doping source followed by thermal annealing in N2O plasma protective ambient. The device exhibited desirable rectifying behavior. Distinct electroluminescence emission centered at 3.2 eV and 2.4 eV were detected from this device under forward bias at room temperature. The intensive ultraviolet emission was comparable to the visible emission in the electroluminescence spectrum, which represent remarkable progress in the performance of ZnO homojunction LED.  相似文献   

13.
A ruthenium-mediated photoelectrochemical sensor was developed for the detection of BPA, using molecularly imprinted polymers (MIPs) as the recognition element, a tin oxide (SnO2) nanoparticle-modified ITO as the electrode, and a blue 473-nm LED as the excitation light source. Photoelectrochemical oxidation of BPA on SnO2 electrode was achieved by [Ru(bpy)3]2+ under the irradiation of light. It was found that BPA was oxidized by Ru3+ species produced in the photoelectrochemical reaction, resulting in the regeneration of Ru2+ and the concomitant photocurrent enhancement. MIPs film was prepared by electropolymerization of pyrrole on SnO2 electrode using BPA as the template. Surface morphology and properties of the as-prepared electrode were characterized by SEM, electrochemical impedance spectroscopy, and photocurrent measurement. In the presence of BPA, an enhanced photocurrent was observed, which was dependent on the amount of BPA captured on the electrode. A detection limit of 1.2 nM was obtained under the optimized conditions, with a linear range of 2–500 nM. Selectivity of the sensor was demonstrated by measuring five BPA analogs. To verify its practicality, this sensor was applied to analyze BPA spiked tap water and river water. With advantages of high sensitivity and selectivity, low-cost instrument, and facile sensor preparation procedure, this sensor is potentially suitable for the rapid monitoring of BPA in real environmental samples. Moreover, the configuration of this sensor is universal and can be extended to organic molecules that can be photoelectrochemically oxidized by Ru3+.  相似文献   

14.
PM2.5 and PM10 samples were simultaneously collected monthly at a downtown site in Beijing from May 2002 to April 2003 and analyzed by instrumental neutron activation analysis (INAA) combined with organic solvent extraction method for the concentrations and distributions of extractable organohalogens (EOX), including extractable organochlorinated (EOCl), organobrominated (EOBr) and organoiodinated compounds (EOI). The concentrations of EOCl, EOBr and EOI were 10.5–79.2 ng/m3, ND-8.2 ng/m3 and 1.6–8.2 ng/m3 in PM2.5, respectively, and 37.0–73.3 ng/m3, 1.6–12.8 ng/m3 and 1.6–8.5 ng/m3 in PM10, respectively, which were increasing in the order of EOCl≫EOBr∼EOI. EOCl accounted for 73–88% and 69–91% of EOX in PM2.5 and PM10, respectively, which showed that EOCl was the major component of the organohalogens. There was a significant difference of EOCl concentrations in PM2.5 and PM10 in different seasons, which suggested that the concentrations of EOCl in the atmosphere were significantly affected by the meteorologic conditions and anthropogenic activities.  相似文献   

15.
Summary For the identification of air pollution sources, about 500 airborne particulate matter (PM2.5and PM10) samples were collected by using a Gent air sampler and a polycarbonate filter in an urban region in the middle of Korea from 2000 to 2003. The concentrations of 25 elements in the samples were measured by using instrumental neutron activation analysis (INAA). Receptor modeling was performed on the air monitoring data by using the positive matrix factorization (PMF2) method. According to this analysis, the existence of 6 to 10PMF factors, such as metal-alloy, oil combustion, diesel exhaust, coal combustion, gasoline exhaust, incinerator, Cu-smelter, biomass burning, sea-salt, and soil dust were identified.  相似文献   

16.
In the time period from June 2005 to May 2006 in 42 sampling campaigns 84 filter samples of airborne particulate matter, coarse (PM10–2.5) and fine (PM2.5), were collected using a Gent stacked filter unit in the coastal industrial area of Aspropyrgos in Attica, Greece. The average PM10 (PM10–2.5 + PM2.5) concentration was found to be 66 μg · m−3, exceeding more than 1.6 times the annual limit of 40 μg · m−3. The samples were analysed for Cl, NO3 , SO4 2−, Ca2+, Mg2+, Na+, K+ and NH4 + using ion chromatography. The data were compared with results obtained with other spectrometric methods, such as inductively coupled plasma-atomic emission spectrometry, atomic absorption spectrometry, energy dispersive X-ray fluorescence and reflectometry. The determined average ionic content comprised about 44% of the PM10 mass. The ionic composition, as well as the possible matrix compounds in both fractions were evaluated by dividing the sampling period into summer and winter season. In the PM10–2.5/PM2.5 fraction in summer time the concentrations of Ca2+, Mg2+ and NO3 were enriched in the coarse fraction. In winter time all species were enriched in the coarse fraction, especially Ca2+, Cl and NO3 . NH4 + was constantly higher in the fine fraction in summer as well as in winter time. Factor analysis was applied to obtain correlations between cations and anions leading to matrix compounds in both fractions. From the evaluation of the results obtained, some of the local air pollution sources could be identified. Correspondence: Klaus-Michael Ochsenkühn, Laboratory for Trace Element Studies, Institute of Physical Chemistry, NCSR “Demokritos”, Aghia Paraskevi 15310, Athens, Greece  相似文献   

17.
A new element tracer technique has firstly been established to estimate the contributions of mineral aerosols from both inside and outside Beijing. The ratio of Mg/Al in aerosol is a feasible element tracer to distinguish between the sources of inside and outside Beijing. Mineral aerosol, inorganic pollution aerosol mainly as sulfate and nitrate, and organic aerosol are the major components of airborne particulates in Beijing, of which mineral aerosol accounted for 32%–-67% of total suspended particles (TSP), 10% –70% of fine particles (PM2.5), and as high as 74% and 90% of TSP and PM2.5, respectively, in dust storm. The sources from outside Beijing contributed 62% (38%–-86%) of the total mineral aerosols in TSP, 69% (52%–-90%) in PM10, and 76% (59%–-93%) in PM2.5 in spring, and 69% (52%–-83%), 79% (52%–-93%), and 45% (7% – 79%) in TSP, PM10, and PM2.5, respectively, in winter, while only ≈20% in summer and autumn. The sources from outside Beijing contributed as high as 97% during dust storm and were the dominant source of airborne particulates in Beijing. The contributions from outside Beijing in spring and winter are higher than those in summer, indicating clearly that it was related to the various meteorological factors.  相似文献   

18.
Humidity sensors have gained immense importance as non‐invasive, wearable healthcare devices for personal care as well as disease diagnostics. However, non‐specificity, poor stability at extreme conditions, and low sensitivity of the humidity sensor inhibit its usage as a health monitoring device. In the present study, N?F containing organic molecule, SelectfluorTM (F‐TEDA) based humidity sensors with ~1–2 mm long needle‐shaped crystals is fabricated on interdigitated electrodes resulting in excellent performance. The unidirectional growth of crystals led to the formation of a conduction pathway for water molecules across the crystal, which otherwise are non‐conducting. The as‐fabricated humidity sensor at an operational voltage of 0.8 V displays a sensitivity of six orders in magnitude, best reported so far. The sensor does not exhibit any response upon exposure to various volatile organic compounds and reactive gases, indicating remarkable specificity. The sensor is tolerant to high moisture of 95 % for prolonged hours followed by monitoring over several days and degrades to 50 % of its original sensitivity only after continuous exposure for several days. Electrochemical impedance spectroscopy (EIS) shows reversal from resistive to capacitive behavior with increasing humidity levels. The fabricated humidity sensor acts as a healthcare device for breath rate monitoring and touch‐free examination of skin moisture.  相似文献   

19.
The human activities in their various aspects cause a change in the natural air quality. This change results more marked in very populated and in high industrialized areas. Some pollutants emitted are typical of a particular activity. Each source of pollution is identified by its profile in the composition of the emissions in the environment. Multivariate receptor models can be used in order to apportion pollutants to the different sources assessing the contribution of each source to the total pollution.This paper deals with the application of Absolute Principal Component Scores (APCS) receptor model to data obtained from the automatic network of air quality monitoring in the city of Bari (South Italy). The parameters monitored by automatic networks, as bihourly values, are PM10, NOx, CO, Benzene, Toluene, Xilene. The data shown in this paper concerning 1 month almost of sampling in different monitoring stations of Bari Municipality during the period of time from January 2005 to April 2006. Moreover preliminary results obtained applying the APCS model to daily PM2.5 samples collected during SITECOS PRIN project are shown. The results concerning data collected in corso Cavour (Bari) during the month of October 2005.The results obtained by APCS receptor model seem to suggest a poor contribution of the “vehicular traffic source” and a relevant contribution of the “secondary particulate source” to particulate matter concentrations.  相似文献   

20.
The leakage of sulphur hexafluoride (SF6) gas threats the global climate changes and personnel safety. Monitoring the concentration of SF6 in its application places is an industry regulation. In this study, ion mobility spectrometry (IMS) was developed for fast monitoring traces of SF6 in near-source ambient air. Due to the water is an important part of the natural air and affects most atmospheric measurements, the operating parameters of IMS monitoring SF6 were optimised for quantitative analysis of SF6 at different relative humidity (RH). It is discovered two main product ions SF6? and SOF4? by IMS at different RH. The calibration curves of SF6 were investigated by its relationship with the peak intensity of SOF4 for real application. The time resolution of the measurement was obtained less than 1 s and the limit of detection (LOD) achieved 0.16–0.68 ppm with a data averaging of 30 times. At last, the simulated application of monitoring SF6 leakage was tested in the fume hood of our lab. The results showed a great potential application prospect of IMS in monitoring SF6 in the ambient air of its application places.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号