首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 682 毫秒
1.
The cerium density and valence in micrometer‐size platinum‐supported cerium–zirconium oxide Pt/Ce2Zr2Ox (x=7–8) three‐way catalyst particles were successfully mapped by hard X‐ray spectro‐ptychography (ptychographic‐X‐ray absorption fine structure, XAFS). The analysis of correlation between the Ce density and valence in ptychographic‐XAFS images suggested the existence of several oxidation behaviors in the oxygen storage process in the Ce2Zr2Ox particles. Ptychographic‐XAFS will open up the nanoscale chemical imaging and structural analysis of heterogeneous catalysts.  相似文献   

2.
The cerium oxidation states in single catalyst particles of Pt/Ce2Zr2Ox (x=7 to 8) were investigated by spatially resolved nano X‐ray absorption fine structure (nano‐XAFS) using an X‐ray nanobeam. Differences in the distribution of the Ce oxidation states between Pt/Ce2Zr2Ox single particles of different oxygen compositions x were visualized in the obtained two‐dimensional X‐ray fluorescent (XRF) mapping images and the Ce LIII‐edge nano X‐ray absorption near‐edge structure (nano‐XANES) spectra.  相似文献   

3.
This work is mainly focused on investigating the effects of different doped metal cations on the formation of Ce20M1Ox (M=Zr, Cr, Mn, Fe, Co, Sn) composite oxides and their physicochemical and catalytic properties for NO reduction by CO as a model reaction. The obtained samples were characterized by using N2 physisorption, X‐ray diffraction, laser Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, inductively coupled plasma atomic emission spectroscopy, X‐ray photoelectron spectroscopy, temperature‐programmed reduction by hydrogen and by oxygen (H2‐TPR and O2‐TPD), in situ diffuse reflectance infrared Fourier transform spectroscopy, and the NO+CO model reaction. The results imply that the introduction of Mx+ into the lattice of CeO2 increases the specific surface area and pore volume, especially for variable valence metal cations, and enhances the catalytic performance to a great extent. In this regard, increases in the oxygen vacancies, reduction properties, and chemisorbed O2? (and/or O?) species of these Ce20M1Ox composite oxides (M refers to variable valence metals) play significant roles in this reaction. Among the samples, Ce20Cr1Ox exhibited the best catalytic performance, mainly because it has the best reducibility and more chemisorbed oxygen, and significant reasons for these attributes may be closely related to favorable synergistic interactions of the vacancies and near‐surface Ce3+ and Cr3+. Finally, a possible reaction mechanism was tentatively proposed to understand the reactions.  相似文献   

4.
Ti1–xFexO2 / Fe2O3 (x = 0.3, 0.6, and 0.7 wt%) composites were prepared by solid state reaction of the oxides TiO2 (rutile phase) and Fe2O3 at 550 °C. The following techniques were applied for the characterization of the composites: X‐ray powder diffraction, Mössbauer spectroscopy, SEM, energy dispersive X‐ray spectroscopy and adsorption of nitrogen. The anatase/rutile/hematite ratio and the abundance of Fe3+ were quantified. The results indicate that Fe3+ substituted Ti4+ in the rutile structure and that the α‐Fe2O3 phase was predominantly on the surface of the crystalline Ti1–xFexO2 powders. A substantial increase of the materials density, with respect to rutile, favoured the application of the composites in photocatalytic experiments. The performance of the solids upon the photodegradation of aqueous solutions of carbofuran was evaluated. The Lewis sites created in the composites correlated directly with the photodegradation rate constant of carbofuran and the decrease of the total organic carbon content in the treated solutions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
We have been exploring the utilization of supported ceria and ceria–zirconia nano-oxides for different catalytic applications. In this comprehensive investigation, a series of Ce x Zr1−x O2/Al2O3, Ce x Zr1−x O2/SiO2 and Ce x Zr1−x O2/TiO2 composite oxide catalysts were synthesized and subjected to thermal treatments from 773 to 1073 K to examine the influence of support on thermal stability, textural properties and catalytic activity of the ceria–zirconia solid solutions. The physicochemical characterization studies were performed using X-ray diffraction (XRD), Raman spectroscopy (RS), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HREM), thermogravimetry and BET surface area methods. To evaluate the catalytic properties, oxygen storage/release capacity (OSC) and CO oxidation activity measurements were carried out. The XRD analyses revealed the formation of Ce0.75Zr0.25O2, Ce0.6Zr0.4O2, Ce0.16Zr0.84O2 and Ce0.5Zr0.5O2 phases depending on the nature of support and calcination temperature employed. Raman spectroscopy measurements in corroboration with XRD results suggested enrichment of zirconium in the Ce x Zr1−x O2 solid solutions with increasing calcination temperature thereby resulting in the formation of oxygen vacancies, lattice defects and oxygen ion displacement from the ideal cubic lattice positions. The HREM results indicated a well-dispersed cubic Ce x Zr1−x O2 phase of the size around 5 nm over all supports at 773 K and there was no appreciable increase in the size after treatment at 1073 K. The XPS studies revealed the presence of cerium in both Ce4+ and Ce3+ oxidation states in different proportions depending on the nature of support and the treatment temperature applied. All characterization techniques indicated absence of pure ZrO2 and crystalline inactive phases between Ce–Al, Ce–Si and Ce–Ti oxides. Among the three supports employed, silica was found to stabilize more effectively the nanosized Ce x Zr1−x O2 oxides by retarding the sintering phenomenon during high temperature treatments, followed by alumina and titania. Interestingly, the alumina supported samples exhibited highest OSC and CO oxidation activity followed by titania and silica. Details of these findings are consolidated in this review.  相似文献   

6.
A series of Ti1-xZrxO2 materials were synthesized through a multistep sol-gel process. The structural characteristics were investigated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman measurements. The experimental results showed that a solid solution could be obtained at low Zr/(Ti+Zr) molar ratios (x ≤0.319). Raman measurements exhibited that the presence of zirconium in the solid solutions greatly retarded the amorphous-anatase and anatase-rutile transitions. The diffuse reflectance UV-Vis spectra revealed that the bandgap of the solid solution was enlarged gradually with the increment of incorporated zirconium content. The Ti1-xZrxO2 solid solutions exhibited higher photocatalytic activity than pure TiO2 for the degradation of 4-chlorophenol aqueous solution.  相似文献   

7.
The large‐scale industrial production of acetic acid (HAc) from carbonylation of methanol has enabled intense research interest from direct hydrogenation of HAc to acetaldehyde (AA). Herein, a series of cerium‐iron oxide solid solution supported metallic cobalt catalysts were prepared by modified sol‐gel method and were applied in gas‐phase hydrogenation of HAc to AA. A synergistic effect between the hydrogenation metal cobalt and Ce‐Fe oxide solid solution is revealed. Specifically, oxygen vacancies provide the active sites for adsorption of HAc, while highly uniformly dispersed metallic Co adsorbs H2 and activates the reduction of HAc into AA. Moreover, the metallic Co can also assist the cyclical conversion between Fe3+/Fe2+ and Ce3+/Ce4+ on the surface of Ce1‐xFexO2‐δ supports. The unique effect substantially enhances the ability of the support material to rapidly capture oxygen atoms from HAc. It is found that the catalyst of 5% Co/Ce0.8Fe0.2O2‐δ with the highest concentration of oxygen vacancy presents the best catalytic performance (i.e. acetaldehyde yield reaches 49.9%) under the optimal reaction conditions (i.e. 623 K and H2 flow rate = 10 mL/min). This work indicates that the Co/Ce‐Fe oxide solid solution catalyst can be potentially used for the selective hydrogenation from HAc to AA. The synergy between the metallic Co and Ce1‐xFexO2‐δ revealed can be extended to the design of other composite catalysts.  相似文献   

8.
The ternary phase hexacerium tricosacadmium telluride, Ce6Cd23Te, was synthesized by a high‐temperature reaction of the elements in sealed Nb ampoules and was structurally characterized by powder and single‐crystal X‐ray diffraction. The structure, established from single‐crystal X‐ray diffraction methods, is isopointal with the Zr6Zn23Si structure type (Pearson symbol cF 120, cubic space group Fm m ), a filled version of the Th6Mn23 structure with the same space group and Pearson symbol cF 116. Though no Cd‐containing rare‐earth metal binaries are known to form with this structure, it appears that the addition of small amounts of a p‐block element allows the formation of such interstitially stabilized ternary compounds. Temperature‐dependent direct current (dc) magnetization measurements suggest local‐moment magnetism arising from the Ce3+ ground state, with possible valence fluctuations at low temperature, inferred from the deviations from the Curie–Weiss law.  相似文献   

9.
Nanoscale iron‐doped zirconia solid‐solution aerogels are prepared via a simple ethanol thermal route using zirconyl nitrate and iron nitrate as starting materials, followed by a supercritical fluid drying process. Structural characteristics are investigated by means of powder X‐ray diffraction (XRD), thermal analyses (TG/DTA), N2 adsorption measurements and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The results show that the resulting iron‐doped solid solutions are metastable tetragonal zirconia which exhibit excellent dispersibility and high solubility of iron oxide. Further, when the Fe:(Fe+Zr) ratio x is lower than 0.10, all of the Fe3+ ions can be incorporated into ZrO2 by substituting Zr4+ to form Zr1?xFexOy solid solutions. Moreover, for the first time, an additional hydroxyl group band that is not present in pure ZrO2 is observed by DRIFTS for the Zr(Fe)O2 solid solution. This is direct evidence of Fe3+ ions incorporated into ZrO2. These Zr1?xFexOy solid solutions are excellent catalysts for the solvent‐free aerobic oxidation of n‐hexadecane using air as the oxidant under ambient conditions. The Zr0.8Fe0.2Oy solid‐solution catalyst demonstrates the best catalytic properties, with the conversion of n‐hexadecane reaching 36.2 % with 48 % selectivity for ketones and 24 % selectivity for alcohols and it can be recycled five times without significant loss of activity.  相似文献   

10.
Ce1−xYxO2 and Ce0.85−xZr0.15YxO2 mixed oxides have been prepared by 1000 °C-nitrates calcination to ensure thermally stable catalysts. The physico-chemical properties of the mixed oxides have been studied by N2 adsorption at −196 °C, XPS, XRD, Raman spectroscopy and H2-TPR, and the catalytic activity for soot oxidation in air has been studied by TG in the loose and tight contact modes. Yttrium is accumulated at the surface of Ce1−xYxO2 and Ce0.85−xZr0.15YxO2, and this accumulation is more pronounced for the former formulation than for the latter, because the deformation of the lattice due to zirconium doping favours yttrium incorporation. Yttrium and zirconium exhibit opposite effects on the surface concentration of cerium; while zirconium promotes the formation of cerium-rich surfaces, yttrium hinders the accumulation of cerium on the surface. For experiments in tight contact between soot and catalyst, all the Ce1−xYxO2 catalysts are more active than bare CeO2, and Ce0.99Y0.01O2 is the most active catalyst. The benefit of yttrium doping in catalytic activity of ceria can be related to two facts: (i) the Y3+ surface enrichment hinders crystallite growth; (ii) the surface segregation of Y3+ promotes oxygen vacancies creation. High yttrium loading (x = 0.12) is less effective than low dosage (x = 0.01) because yttrium is mainly accumulated at the surface of the particles and hinders the participation of cerium in the soot oxidation reaction, which is the active component. For the mixed oxides with formulation Ce0.85−xZr0.15YxO2 (operating in tight contact) the effect of zirconium on the catalytic activity prevails with respect to that of yttrium. For experiments in loose contact between soot and catalyst, the catalytic activity depends on their BET surface area, and the catalysts Ce0.85−xZr0.15YxO2 (BET = 10–13 m2/g) are more active than the catalysts Ce1−xYxO2 (BET = 2–3 m2/g). In the loose contact mode, the yttrium doping and loading have a minor or null affect on the activity, and the stabilising effect of the BET area due to zirconium doping prevails.  相似文献   

11.
用共沉淀法制得一系列铈锆比不同的Ce0.3+xZr0.6-xY0.1O1.95储氧材料, 并用于制备了一系列低贵金属Pt+Rh/Ce0.3+xZr0.6-xY0.1O1.95+Al2O3三效催化剂. 用比表面、程序升温还原以及X射线衍射对该系列催化剂进行表征, 结果发现, 催化剂的活性与催化剂中贵金属的还原性能密切相关, 低铈储氧材料比高铈储氧材料更有利于促进贵金属还原, 因而含低铈储氧材料催化剂的活性明显优于含高铈储氧材料催化剂的活性, Pt+Rh/Ce0.35Zr0.55Y0.1O1.95+Al2O3的活性最佳, 对HC, CO和NO的起燃温度最低分别为: 235, 175, 200 ℃. 样品经1000 ℃水热老化之后, 贵金属Pt被烧结而发生迁移, 使得催化剂的活性及还原性能变差, 含低铈材料的催化剂的抗老化性能优于含高铈材料的催化剂, 其中Pt+Rh/Ce0.35Zr0.55Y0.1O1.95+Al2O3的抗老化性能最好.  相似文献   

12.
Uniform Ce1−xZrxO2 (x=0.2–0.8) nanocrystals with ultra-small size were synthesized through a thermolysis process, facilitated by the initial formation of precursor (hydrated (Ce,Zr)-hydroxides) at low temperature. TEM, XRD, EDAX, and Raman spectra were employed to study the formation of the solid solutions with various Ce/Zr ratios. Ultraviolet–visible (UV–vis) spectra showed that the ratios of Ce3+ to Ce4+ in both surface and bulk for the as-prepared Ce1−xZrxO2 nanocrystals increased with the zirconium content x. The well-distributed Zr and Ce in the hydrated (Ce,Zr)-hydroxides before their thermolysis became the crucial factor for the structural homogeneity of the products. In addition, this strategy was extended to the synthesis of Ce1−xGdxO1−x/2, Ce1−xSmxO1−x/2, and Ce1−xSnxO2 solid solutions. Catalytic measurements indicated that the ceria-based catalysts were active for CO oxidation at temperatures beyond 250 °C and the sequence of catalytic activity was Ce0.5Zr0.5O2>Ce0.8Zr0.2O2>Ce0.2Zr0.8O2>Ce0.5Sm0.5O1.75.  相似文献   

13.
刘爽  吴晓东  林雨  李敏  翁端 《催化学报》2014,35(3):407-415
通过在Ce0.6Zr0.4O2载体上浸渍Pt(NO32制得Pt/Ce0.6Zr0.4O2催化剂,该催化剂在松散接触条件下,于NO+O2或O2气氛中均表现出比Pt/Al2O3更好的碳烟氧化性能. 进一步研究表明,Pt/Ce0.6Zr0.4O2催化剂中的Pt 与Ce0.6Zr0.4O2存在相互作用,使得催化剂在一定温度范围内对活性氧的利用率大为提高,从而促进了气氛中NO↔NO2的循环,乃至碳烟与NO2的反应和碳烟表面含氧中间物种的生成;更重要的是,这部分活性氧本身可加速含氧中间物种的分解. 因此,在NO + O2的气氛中,Pt/Ce0.6Zr0.4O2催化剂的碳烟起燃温度比Pt/Al2O3降低了34 ℃.  相似文献   

14.
Gd2Zr2O7中Gd具有很大的中子吸收截面, 其烧绿石结构-缺陷萤石结构的转变能较低, 使其成为理想的核废料固化基材. 使用硝酸盐为原料, 添加少量NaF作助熔剂, 在较低温度下(和传统高温固相反应相比), 合成了烧绿石型Gd2Zr2O7. 以Ce4+模拟Pu4+, 研究了Gd2Zr2O7对锕系核素的固化, 并合成了系列模拟固化体(Gd1-xCex)2Zr2O7+x (0≤x≤0.6). 采用粉末X射线衍射(XRD)对系列样品进行了表征. 结果表明: 随着x值的增大,样品从烧绿石结构向缺陷萤石结构转变, 且晶胞大小基本保持恒定, 但当x=0.6时, 衍射峰明显宽化, 晶格畸变比较严重, 晶格稳定性降低. 当x=1时, 即用Ce4+完全取代Gd3+进行合成, 不能得到Ce2Zr2O8, 产物发生了相分离, 为四方结构的(Zr0.88Ce0.12)O2和萤石结构的(Ce0.75Zr0.25)O2的混合物. 模拟固化体的浸出率测试表明: 当x≤0.2时, 各元素浸出率均很低, 但当x≥0.4时, 各元素的浸出率明显升高, 说明以Gd2Zr2O7作为固化Pu4+的基材, Pu4+掺入量不宜高于40%.  相似文献   

15.
The metal–organic framework (MOF) [Pd(2‐pymo)2]n (2‐pymo=2‐pyrimidinolate) was used as catalyst in the hydrogenation of 1‐octene. During catalytic hydrogenation, the changes at the metal nodes and linkers of the MOF were investigated by in situ X‐ray absorption spectroscopy (XAS) and IR spectroscopy. With the help of extended X‐ray absorption fine structure and X‐ray absorption near edge structure data, Quick‐XAS, and IR spectroscopy, detailed insights into the catalytic relevance of Pd2+/Pd0 in the hydrogenation of 1‐octene could be achieved. Shortly after exposure of the catalyst to H2 and simultaneously with the hydrogenation of 1‐octene, the aromatic rings of the linker molecules are hydrogenated rapidly. Up to this point, the MOF structure remained intact. After completion of linker hydrogenation, the linkers were also protonated. When half of the linker molecules were protonated, the onset of reduction of the Pd2+ centers to Pd0 was observed and the hydrogenation activity decreased, followed by fast reduction of the palladium centers and collapse of the MOF structure. Major fractions of Pd0 are only observed when the hydrogenation of 1‐octene is almost finished. Consequently, the Pd2+ nodes of the MOF [Pd(2‐pymo)2]n are identified as active centers in the hydrogenation of 1‐octene.  相似文献   

16.
The novel nitrides (R1–xCa3+xN1–x/3)Bi2 (with R = La, Ce, Pr) crystallize in the K2[NiF4] structure type (I4/mmm, No. 139, Z = 2). Samples (La1–xCa3+xN1–x/3)Bi2 with x = 0.10, 0.05, 0.00, (Ce1–xCa3+xN1–x/3)Bi2 with x = 0.30, and (PrCa3N)Bi2 were obtained as single phase microcrystalline powders according to X‐ray diffraction and the crystal structure details were derived from Rietveld refinements based on X‐ray and neutron diffraction powder patterns. A partial order of R3+/Ca2+ on two crystallographic sites is governed by different ionic radii and charges. (La1–xCa3+xN1–x/3)Bi2 and (Ce1–xCa3+xN1–x/3)Bi2 exhibit small homogeneity ranges and typically a nitrogen deficiency. In contrast, for (PrCa3N)Bi2 no indications for a significant homogeneity range or deficiency of nitrogen was observed. (La1–xCa3+xN1–x/3)Bi2 with x = 0.05 is a diamagnet. X‐ray absorption spectroscopy at the CeL3‐edge as well as magnetic susceptibility measurements evidence that (Ce1–xCa3+xN1–x/3)Bi2 with x = 0.30 contains Ce3+ in the 4f1 configuration. According to electrical resistivity data, samples from all three systems are heavily doped semiconductors.  相似文献   

17.
Mesoporous (MSU) Ce0.5Zr0.5O2 mixed oxide with a high specific surface area has been synthesized under weak acidic condition in the presence of an anionic surfactant, sodium dodecylbenzenesulfonate. The effect of the pH value on the formation of mesostructure and the thermal stability of the material has been evaluated. The products were characterized by transmission electron microscopy, powder X-ray diffraction and nitrogen adsorption-desorption measurements. The results showed that the as-prepared Ce0.5Zr0.5O2 mixed oxide possessed a specific surface area of 163.3 m^2·g^-1, which had a cubic fluorite-type structure and possessed specific surface areas of 148.4 and 62.4 m^2·g^-1 after calcination at 500 and 800 ℃ for 2 h, respectively. The material showed excellent thermal stability.  相似文献   

18.
A series of Mg‐Zr mixed oxides with different nominal Mg/ (Mg+Zr) atomic ratios, namely 0, 0.1, 0.2, 0.4, 0.85, and 1, is prepared by alcogel methodology and fundamental insights into the phases obtained and resulting active sites are studied. Characterization is performed by X‐ray diffraction, transmission electron microscopy, X‐ray photoelectron spectroscopy, N2 adsorption–desorption isotherms, and thermal and chemical analysis. Cubic MgxZr1?xO2?x solid solution, which results from the dissolution of Mg2+ cations within the cubic ZrO2 structure, is the main phase detected for the solids with theoretical Mg/ (Mg+Zr) atomic ratio ≤0.4. In contrast, the cubic periclase (c‐MgO) phase derived from hydroxynitrates or hydroxy precursors predominates in the solid with Mg/(Mg+Zr)=0.85. c‐MgO is also incipiently detected in samples with Mg/(Mg+Zr)=0.2 and 0.4, but in these solids the c‐MgO phase mostly arises from the segregation of Mg atoms out of the alcogel‐derived c‐MgxZr1?xO2?x phase during the calcination process, and therefore the species c‐MgO and c‐MgxZr1?xO2?x are in close contact. Regarding the intrinsic activity in furfural–acetone aldol condensation in the aqueous phase, these Mg? O? Zr sites located at the interface between c‐MgxZr1?xO2?x and segregated c‐MgO display a much larger intrinsic activity than the other noninterface sites that are present in these catalysts: Mg? O? Mg sites on c‐MgO and Mg? O? Zr sites on c‐MgxZr1?xO2?x. The very active Mg? O? Zr sites rapidly deactivate in the furfural–acetone condensation due to the leaching of active phases, deposition of heavy hydrocarbonaceous compounds, and hydration of the c‐MgO phase. Nonetheless, these Mg‐Zr materials with very high specific surface areas would be suitable solid catalysts for other relevant reactions catalyzed by strong basic sites in nonaqueous environments.  相似文献   

19.
The oxygen vacancies of defective iron–cobalt oxide (FeCoOx‐Vo) nanosheets are modified by the homogeneously distributed sulfur (S) atoms. S atoms can not only effectively stabilize oxygen vacancies (Vo), but also form the Co?S coordination with Co active site in the Vo, which can modulate the electronic structure of the active site, enabling FeCoOx‐Vo‐S to exhibit much superior OER activity. FeCoOx‐Vo‐S exhibits a mass activity of 2440.0 A g?1 at 1.5 V vs. RHE in 1.0 m KOH, 25.4 times higher than that of RuO2. The Tafel slope is as low as 21.0 mV dec?1, indicative of its excellent charge transfer rate. When FeCoOx‐Vo‐S (anode catalyst) is paired with the defective CoP3/Ni2P (cathode catalyst) for overall water splitting, current densities of as high as 249.0 mA cm?2 and 406.0 mA cm?2 at a cell voltage of 2.0 V and 2.3 V, respectively, can be achieved.  相似文献   

20.
A series of ceria-incorporated zirconia (Ce1−xZrxO2,x = 0 to 1) solid solutions were prepared by employing the solution combustion synthesis route. The products were characterized by XRD and UV-Vis-NIR diffuse reflectance spectroscopy. The materials are crystalline in nature and the lattice parameters of the solid solution series follow Vegard’s law. Diffuse reflectance spectra of the solid solutions in the UV region show two intense bands at 250 and 297 nm which are assigned respectively to Ce3+ ← O2−and Ce4+ ← O2− charge transfer transitions. The two vibrational bands in 6960 cm−1 and 5168 cm−1 in the NIR region indicate the presence of surface hydroxyl groups on these materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号