首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 210 毫秒
1.
Herein is described a versatile and broad synergistic strategy for expansion of chemical space and the synthesis of valuable molecules (e.g. carbocycles and heterocycles), with up to three quaternary stereocenters, in a highly enantioselective fashion from simple alcohols (31 examples, 95:5 to >99.5:0.5 e.r.) using integrated heterogeneous metal/chiral amine multiple relay catalysis and air/O2 as the terminal oxidant. A novel highly 1,4‐selective heterogeneous metal/amine co‐catalyzed hydrogenation of enals was also added to the relay catalysis sequences.  相似文献   

2.
The highly enantioselective organocatalytic construction of spiroindanes containing an all‐carbon quaternary stereocenter by intramolecular Friedel–Crafts‐type 1,4‐addition is described. The reaction was catalyzed by a cinchonidine‐based primary amine and accelerated by water and p‐bromophenol. A variety of spiro compounds containing quaternary stereocenters were obtained with excellent enantioselectivity (up to 95 % ee). The reaction was applied to the asymmetric formal synthesis of the spirocyclic natural products (?)‐cannabispirenones A and B.  相似文献   

3.
The enantioselective conjugated addition of tritylthiol to in situ generated ortho‐quinone methides (o‐QMs) is catalyzed by an acid–base bifunctional squaramide organocatalyst. The transformation proceeds with high yield (up to 99 %) and stereoselectivity (up to 97:3 e.r.) using water as solvent under mild conditions. The catalyst system provides a new strategy for the synthesis of optically active benzyl mercaptans. Control experiments suggested that o‐QMs are generated by the tertiary amine moiety of the squaramide organocatalyst and that the water–oil biphase is crucial for achieving high reactivity and stereoselectivity.  相似文献   

4.
Highly efficient catalytic asymmetric Claisen rearrangements of O‐propargyl β‐ketoesters and O‐allyl β‐ketoesters have been accomplished under mild reaction conditions. In the presence of the chiral N,N′‐dioxide/NiII complex, a wide range of allenyl/allyl‐substituted all‐carbon quaternary β‐ketoesters was obtained in generally good yield (up to 99 %) and high diastereoselectivity (up to 99:1 d.r.) with excellent enantioselectivity (up to 99 % ee).  相似文献   

5.
(S)‐Selective kinetic resolution was achieved through the use of a commercially available protease, which was activated with a combination of two different surfactants. The kinetic resolution (KR) process was optimized with respect to activation of the protease and to the acyl donor. The KR proved to be compatible with a range of functionalized sec‐alcohols, giving good to high enantiomeric ratio values (up to >200). The enzymatic resolution was combined with a ruthenium‐catalyzed racemization to give an (S)‐selective dynamic kinetic resolution (DKR) of sec‐alcohols. The DKR process works under very mild reaction conditions to give the corresponding esters in high yields and with excellent enantioselectivities.  相似文献   

6.
A strategy to control the switch between a non‐cycloaddition reaction and a cycloaddition reaction of enals, using N‐heterocyclic carbene (NHC) catalyisis, has been developed. The new scalable protocol leads to γ‐amino‐acid esters bearing a tetrasubstituted stereocenter in good yields and high stereoselectivities by homo‐Mannich reactions of enals and isatin‐derived ketimines. By simply changing the N‐ketimine substituent to an ortho‐hydroxy phenyl group, the corresponding spirocyclic oxindolo‐γ‐lactams are obtained.  相似文献   

7.
The present study comprehensively explores diverse mechanistic pathways for intramolecular hydroamination of prototype 2,2‐dimethyl‐4‐penten‐1‐amine by Cp*Ir chloropyrazole ( 1 ; Cp*=pentamethylcyclopentadienyl) in the presence of KOtBu base with the aid of density functional theory (DFT) calculations. The most accessible mechanistic pathway for catalytic turnover commences from Cp*Ir pyrazolato (Pz) substrate adduct 2 ?S, representing the catalytically competent compound and proceeds via initial electrophilic activation of the olefin C?C bond by the metal centre. It entails 1) facile and reversible anti nucleophilic amine attack on the iridium–olefin linkage; 2) Ir? C bond protonolysis via stepwise transfer of the ammonium N? H proton at the zwitterionic [Cp*IrPz–alkyl] intermediate onto the metal that is linked to turnover‐limiting, reductive, cycloamine elimination commencing from a high‐energy, metastable [Cp*IrPz–hydrido–alkyl] species; and 3) subsequent facile cycloamine liberation to regenerate the active catalyst species. The amine–iridium bound 2 a ?S likely corresponds to the catalyst resting state and the catalytic reaction is expected to proceed with a significant primary kinetic isotope. This study unveils the vital role of a supportive hydrogen‐bonded network involving suitably aligned β‐basic pyrazolato and cycloamido moieties together with an external amine molecule in facilitating metal protonation and reductive elimination. Cooperative hydrogen bonding thus appears pivotal for effective catalysis. The mechanistic scenario is consonant with catalyst performance data and furthermore accounts for the variation in performance for [Cp*IrPz] compounds featuring a β‐ or γ‐basic pyrazolato unit. As far as the route that involves amine N? H bond activation is concerned, a thus far undocumented pathway for concerted amidoalkene → cycloamine conversion through olefin protonation by the pyrazole N? H concurrent with N? C ring closure is disclosed as a favourable scenario. Although not practicable in the present system, this pathway describes a novel mechanistic variant in late transition metal–ligand bifunctional hydroamination catalysis that can perhaps be viable for tailored catalyst designs. The insights revealed herein concerning the operative mechanism and the structure–reactivity relationships will likely govern the rational design of late transition metal–ligand bifunctional catalysts and facilitate further conceptual advances in the area.  相似文献   

8.
The first asymmetric synthesis of important α,α‐disubstituted N‐alkyl allyl amine scaffolds through allylic substitution is reported. This approach is based on palladium catalysis and features ample scope with respect to both the allylic precursor and amine reagent, and high asymmetric induction with enantiomeric ratios (e.r.) up to 98.5:1.5. The use of less‐reactive anilines is also feasible, providing enantioenriched α,α‐disubstituted N‐aryl allylic amines.  相似文献   

9.
An efficient catalytic and stereoselective method for the direct construction of protected ethylene‐amino and propylene‐amino scaffolds attached to quaternary stereocentres is reported. Preliminary investigations revealed a mild base catalysed nucleophilic ring opening of N‐sulfonyl aziridines using the commercially available phosphazene base 2‐tert‐butylimino‐2‐diethylamino‐1,3‐dimethyl‐perhydro‐1,3,2‐diazaphosphorine (BEMP) was possible and resulted in highly efficient alkylation reactions with a range of methine carbon acids. This reaction could be rendered highly asymmetric (up to 97 % ee) by employing phase‐transfer catalysis to control stereoinduction. Incorporation of alkyl substituents onto the aziridine electrophile, resulted in a highly diastereoselective (up to 30:1 d.r.) variant of this methodology. A further extension using N‐protected cyclic sulfamidates as the electrophilic component was successful with a range of pro‐nucleophiles (up to 96 % ee and 45:1 d.r.) and allowed a range of nitrogen protecting groups (carbamate, sulfonyl, phosphonyl, benzyl) to be incorporated into the alkylation adducts. Finally, the utility of the products have been demonstrated in the synthesis of useful heterocycles and compounds bearing structural components of natural products.  相似文献   

10.
The total synthesis of strictamine has been achieved in nine steps from a known enol triflate. Characteristic features of our approach included: a) creation of a C7 all‐carbon quaternary stereocenter at an early synthetic stage; b) use of an N,N‐dimethyl tertiary amine as a surrogate of the primary amine for the rapid build‐up of a functionalized 2‐azabicyclo[3,3,1]nonan‐9‐one skeleton (achieved by using a reaction sequence of α‐bromination of the ketone, followed by a stereoconvergent intramolecular nucleophilic substitution reaction); and c) a late‐stage construction of the indolenine unit.  相似文献   

11.
Cyclic ketones bearing α‐quaternary stereocenters underwent efficient kinetic resolution using cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus. Lactones possessing tetrasubstituted stereocenters were obtained with high enantioselectivity (up to >99 % ee) and complete chemoselectivity. Preparative‐scale biotransformations were exploited in conjunction with a SmI2‐mediated cyclization process to access complex, enantiomerically enriched cycloheptan‐ and cycloctan‐1,4‐diols. In a parallel approach to structurally distinct products, enantiomerically enriched ketones from the resolution with an α‐quaternary stereocenter were used in a SmI2‐mediated cyclization process to give cyclobutanol products (up to >99 % ee).  相似文献   

12.
A desymmetrizing dehydrogenation process catalyzed by a chiral primary amine is described herein. The reaction proceeds through the oxidation of a ketone enamine by IBX and enables the highly enantioselective desymmetrization of 4‐substituted cyclohexanones with the generation of chiral 4‐substituted cyclohexenones containing a remote γ‐stereocenter.  相似文献   

13.
The symmetry breaking of meso primary diols bearing a tetrahydropyran ring was employed, using catalytic asymmetric acyl transfer, to control all‐carbon quaternary stereocenters. The planar chiral Fu DMAP catalyst was used in this reaction to reach a high degree of enantioselectivity (up to 97:3 e.r.) through a synergic effect combining a desymmetrization step and a kinetic resolution. Moreover, a beneficial effect was exhibited by C6F6 solvent, yielding the first example of an organocatalyzed asymmetric acyl transfer. The desymmetrized monoesters were then used to obtain, after a straightforward ring opening sequence, complex polyketide building blocks bearing all‐carbon quaternary stereocenters.  相似文献   

14.
The asymmetric Povarov reaction with α-alkyl styrenes as dienophiles was catalyzed by an N,N'-dioxide L4-Sc(OTf)(3) complex. Enantiopure tetrahydroquinoline derivatives with a quaternary stereocenter at the C4 position were synthesized for the first time. A wide variety of α-alkyl styrenes and N-aryl aldimines were tolerated in the reaction, to give excellent diastereo- (up to 99:1 d.r.) and enantioselectivities (92 to >99% ee). In addition, the reaction could be performed on the gram scale without any loss of yield, diastereoselectivity, or enantioselectivity. An intermolecular hydrogen-shift reaction was found to be a side reaction, which offered a method to synthesize the corresponding quinoline derivatives with chiral quaternary sterocenters.  相似文献   

15.
The Pd‐catalyzed coupling of γ‐hydroxyalkenes with aryl bromides affords enantiomerically enriched 2‐(arylmethyl)tetrahydrofuran derivatives in good yield and up to 96:4 e.r. This transformation was achieved through the development of a new TADDOL/2‐arylcyclohexanol‐derived chiral phosphite ligand. The transformations are effective with an array of different aryl bromides, and can be used for the preparation of products bearing quaternary stereocenters.  相似文献   

16.
The dynamic kinetic resolution of 2‐aroyl‐1‐tetralones was achieved via asymmetric transfer hydrogenation using (S,S)‐RuCl(p‐cymene)TsDPEN (TsDPEN=N‐(tosyl)‐1,2‐diphenylethylenediamine) in formic acid/triethyl‐ amine (5:2, molar ratio), afforded the desired products in good yields (up to 85%) with diastereomeric ratio up to >99:1 and high enantiomeric excesses (up to >99%). The absolute configuration of major the product was confirmed by X‐ray crystal structure analysis.  相似文献   

17.
A PdII‐catalyzed asymmetric aminohydroxylation of 1,3‐dienes with N‐tosyl‐2‐aminophenols was developed by making use of a chiral pyridinebis(oxazoline) ligand. The highly regioselective reaction provides direct and efficient access to chiral 3,4‐dihydro‐2H‐1,4‐benzoxazines in high yield and enantioselectivity (up to 96:4 e.r.). The reaction employs readily available N‐tosyl‐2‐aminophenols as a unique aminohydroxylation reagent and is complementary to known asymmetric aminohydroxylation methods.  相似文献   

18.
Azomethine imines are valuable substrates in asymmetric catalysis, and can be precursors to β‐amino carbonyl compounds and complex hydrazines. However, their utility is limited because complex and enantioenriched azomethine imines are often unavailable. Reported herein is a kinetic resolution of N,N′‐cyclic azomethine imines by enantioselective reduction (s=13–43). This resolution was accomplished using a Brønsted acid catalyst, and represents the first example of the asymmetric reduction of azomethine imines. The pyrazolidinone product (up to 86 % ee) and the recovered azomethine imine (up to 99 % ee) can both be used to access the opposite enantiomers of valuable products.  相似文献   

19.
Asymmetric transfer hydrogenation was applied to a wide range of racemic aryl α‐alkoxy‐β‐ketoesters in the presence of well‐defined, commercially available, chiral catalyst RuII–(Np‐toluenesulfonyl‐1,2‐diphenylethylenediamine) and a 5:2 mixture of formic acid and triethylamine as the hydrogen source. Under these conditions, dynamic kinetic resolution was efficiently promoted to provide the corresponding syn α‐alkoxy‐β‐hydroxyesters derived from substituted aromatic and heteroaromatic aldehydes with a high level of diastereoselectivity (diastereomeric ratio (d.r.)>99:1) and an almost perfect enantioselectivity (enantiomeric excess (ee)>99 %). Additionally, after extensive screening of the reaction conditions, the use of RuII‐ and RhIII‐tethered precatalysts extended this process to more‐challenging substrates that bore alkenyl‐, alkynyl‐, and alkyl substituents to provide the corresponding syn α‐alkoxy‐β‐hydroxyesters with excellent enantiocontrol (up to 99 % ee) and good to perfect diastereocontrol (d.r.>99:1). Lastly, the synthetic utility of the present protocol was demonstrated by application to the asymmetric synthesis of chiral ester ethyl (2S)‐2‐ethoxy‐3‐(4‐hydroxyphenyl)‐propanoate, which is an important pharmacophore in a number of peroxisome proliferator‐activated receptor α/γ dual agonist advanced drug candidates used for the treatment of type‐II diabetes.  相似文献   

20.
The asymmetric synthesis of alkynyl and monofluoroalkenyl isoindolinones from N‐methoxy benzamides and α,α‐difluoromethylene alkynes is enabled by C?H activation with a chiral CpRhIII catalyst. Remarkably, product formation is solvent‐dependent; alkynyl isoindolinones are afforded in MeOH (up to 86 % yield, 99.6 % ee) whereas monofluoroalkenyl isoindolinones are generated in iPrCN (up to 98:2 Z/E, 93 % yield, 86 % ee). Mechanistic studies revealed chiral allene and E‐configured alkenyl rhodium species as reaction intermediates. The latter is transformed into the corresponding Z‐configured monofluoroalkene upon protonation in the iPrCN system and into an alkyne by an unusual anti β‐F elimination in the MeOH system. Notably, kinetic resolution processes occur in this reaction. Despite the moderate enantiocontrol for the formation of the chiral allene, the Z‐monofluoroalkenyl isoindolinones and alkynyl isoindolinones were obtained in good enantiopurities by one or two sequential kinetic resolution processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号