首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
氧化石墨烯/聚合物复合质子交换膜(GO/Polymer blend PEM)是一种新型的质子交换膜,广泛应用于直接甲醇燃料电池(DMFC)中,已成为质子交换膜研究的热点之一。氧化石墨烯/聚合物复合质子交换膜具有较高的传导质子率、力学性能、阻醇性能和电池性能。本文综述了氧化石墨烯(GO)处理方法、氧化石墨烯/聚合物复合质子交换膜制备方法,氧化石墨烯/聚合物复合质子交换膜的质子传导、阻醇、离子交换容量和电池的性能,氧化石墨烯/聚合物复合质子交换膜质子传递机理及阻醇机理。  相似文献   

2.
质子交换膜(PEM)是质子交换膜燃料电池(PEMFC)的关键组件之一,其性能的好坏在很大程度上决定了PEMFC的性能。本文对PEMFC膜材料的性能表征进行了综述,讨论了膜材料的孔隙率、密度、粘度、磺化率、稳定性、选择透过性及导电性等性能的表征。  相似文献   

3.
燃料电池用质子交换膜的研究进展   总被引:12,自引:0,他引:12  
质子交换膜燃料电池 (PEMFC)以质子交换膜 (PEM )作为电解质和隔膜 ,其性能强烈地依靠PEM的性质 .本文分析了PEMFC对PEM的要求 ,对全氟化、部分氟化和非氟化的PEM进行了分类介绍 ,着重讨论了膜的结构、制备、性质以及它们在PEMFC中的应用  相似文献   

4.
概述了近十年来非含氟型磺化聚合物质子交换膜材料的研究进展,包括各种材料的制备和性质,详细地讨论了材料的化学结构、形态与其性能(质子导电率、耐水性、尺寸稳定性、吸水率、抗自由基氧化性、甲醇透过率等)之间的关系,其中结合作者在磺化聚酰亚胺方面的研究工作,重点对这类材料进行了系统、深入的介绍和讨论.最后,本文还对今后燃料电池用质子交换膜材料的研究提出了一些设想和展望.本文分为上下两篇,其中下篇主要综述了非含氟型磺化聚合物的性能与结构形态之间的关系.  相似文献   

5.
付凤艳  程敬泉 《应用化学》2020,37(4):405-415
保护环境,开发环保型能源,对人类和社会具有重要意义。 质子交换膜燃料电池由于具有燃料转化率较高和无污染的优点,备受关注。 静电纺丝纳米纤维具有比表面积大、高孔隙率和三维的相互连通的网状结构等特点,可以在燃料电池质子交换膜中得到广泛应用。 静电纺丝纳米纤维类复合质子交换膜具有较高的质子传导率,较低的燃料渗透率,较好的化学稳定性能、热稳定性能和机械性能。 本文首先介绍了质子交换膜燃料电池,然后从不同的离子型聚合物基质复合质子交换膜的类别出发,介绍了静电纺丝纳米纤维在Nafion、磺化聚酰亚胺(SPI)、聚苯并咪唑(PBI)、磺化聚醚醚酮(SPEEK)等不同种类的离子型聚合物质子交换膜中的研究现状及作用机理,同时对静电纺丝纳米纤维在质子交换膜的应用方面存在的问题及应用前景做了评论和展望。  相似文献   

6.
质子交换膜燃料电池(PEMFC)是一种电化学能量转换器件,能将燃料中的化学能转换为电能,具有高效、清洁、寿命长等优点,可应用于动力电池、固定式和便携式电源等领域。质子交换膜(PEM)是其中的关键部件,主要用于隔离阴阳两极和传递质子等。但当前质子交换膜燃料电池的发展面临着成本高、寿命不足等挑战。本文结合近年的研究热点,从质子传输机制出发将质子交换膜燃料电池分为磺酸功能化PEM和磷酸掺杂型PEM两大类,从主链结构的差异以及改性方法等方面综述近年来的研究进展,详细介绍了材料的化学结构、膜材料性能、电化学性能等,并针对现存的一些问题和不足对质子交换膜燃料电池今后的发展方向进行了展望。  相似文献   

7.
本文根据聚合物电解质膜燃料电池操作温度、使用的电解质和燃料的不同,将其分为高温质子交换膜燃料电池、低温质子换膜燃料电池、直接甲醇燃料电池和阴离子交换膜燃料电池,综述了它们所用电解质膜的最新进展.第一部分简要介绍了这4种燃料电池的优点和不足.第二部分首先介绍了Nafion膜的结构模型,并对平行柱状纳米水通道模型在介观尺度上进行了修正;接着分别对应用于不同燃料电池的改性膜的改性思路作了分析;最后讨论了用于不同燃料电池的新型质子交换膜的研究,同时列举了性能突出的改性膜和新型质子交换膜.第三部分介绍了阴离子交换膜的研究现状.第四部分对未来聚合物电解质膜的研究作了展望.  相似文献   

8.
非含氟型磺化聚合物质子交换膜材料的研究进展(上)   总被引:1,自引:0,他引:1  
概述了近十年来非含氟型磺化聚合物质子交换膜材料的研究进展,包括各种材料的制备和性质,详细地讨论了材料的化学结构、形态与其性能(质子导电率、耐水性、尺寸稳定性、吸水率、抗自由基氧化性、甲醇透过率等)之间的关系,其中结合作者在磺化聚酰亚胺方面的研究工作,重点对这类材料进行了系统、深入的介绍和讨论.最后,本文还对今后燃料电池用质子交换膜材料的研究提出了一些设想和展望.本文分为上下两篇,其中上篇主要综述了各种非含氟型磺化聚合物的制备方法.  相似文献   

9.
质子交换膜燃料电池因其高效、高能量密度、快速启动等独特优势在便携电子设备及汽车动力装置等应用中极具发展潜力。质子交换膜内的传输通道由于对膜质子传导性能有重要影响而受到研究者们的广泛关注。构筑有序结构的质子传输通道,能够获得质子电导率与燃料渗透率、热稳定性、化学稳定性等性能均衡提升的新型质子交换膜材料。本文结合近年来质子传输通道的研究进展,对控制聚合物的相形态从而构筑有序质子传输通道的研究进行了综述,并针对不同相形态所形成的有序通道对膜及燃料电池性能的影响进行了分类与评述,最后对其发展趋势进行了展望。  相似文献   

10.
直接甲醇燃料电池中的膜性能比较   总被引:2,自引:0,他引:2  
邓会宁  李磊  许莉  王宇新 《物理化学学报》2004,20(11):1372-1375
制备了磺化聚醚醚酮(SPEEK)和磺化酚酞型聚醚砜(SPES-C)两种质子交换膜,考察了其质子导电和阻醇性能.实验发现,两种新型质子交换膜具有一定的化学稳定性和质子电导率,尤其在高温下两种新膜的质子电导率与Nafion膜接近.两种新膜的甲醇透过系数要比Nafion膜的低1~2个数量级.分别以两种新型膜和Nafion115膜为电解质制备了直接甲醇燃料电池膜电极,讨论了膜材料的性能对直接甲醇燃料电池性能的影响.结果表明,膜材料的阻醇性越好,电池的开路电压越高;膜的电导率越高,在较高电流密度区域内电池的性能越好.  相似文献   

11.
The critical component of a proton exchange membrane fuel cell (PEMFC) system is the proton exchange membrane (PEM). Perfluorosulfonic acid membranes such as Nafion are currently used for PEMFCs in industry, despite suffering from reduced proton conductivity due to dehydration at higher temperatures. However, operating at temperatures below 100 °C leads to cathode flooding, catalyst poisoning by CO, and complex system design with higher cost. Research has concentrated on the membrane material and on preparation methods to achieve high proton conductivity, thermal, mechanical and chemical stability, low fuel crossover and lower cost at high temperatures. Non-fluorinated polymers are a promising alternative. However, improving the efficiency at higher temperatures has necessitated modifications and the inclusion of inorganic materials in a polymer matrix to form a composite membrane can be an approach to reach the target performance, while still reducing costs. This review focuses on recent research in composite PEMs based on non-fluorinated polymers. Various inorganic fillers incorporated in the PEM structure are reviewed in terms of their properties and the effect on PEM fuel cell performance. The most reliable polymers and fillers with potential for high temperature proton exchange membranes (HTPEMs) are also discussed.  相似文献   

12.
Proton exchange membranes(PEMs) are a key material for proton exchange membrane fuel cells(PEMFCs). Non-fluorinated hydrocarbon PEMs are low-cost alternatives to Nafion, but limited by the low proton conductivity, because of the weak phase segregation structure and narrow ion-transport channels.Various efforts have been taken to improve the performance of hydrocarbon PEMs, but mostly with complex methodologies. Here we demonstrate a simple, yet very efficient method to create phase segregation structure inside a typical hydrocarbon PEM, sulfonated poly(ether ether ketone)(SPEEK). By simply adding appropriate amounts of water into the DMF solvent, the resulting SPEEK membrane exhibits widened ion-transport channels, with the phase size of 2.7 nm, as indicated by both molecular dynamic(MD) simulations and transmission electron microscope(TEM) observations, and the proton conductivity is thus improved by 200%. These findings not only further our fundamental understanding of hydrocarbon PEMs, but are also valuable to the development of low-cost and practical fuel cell technologies.  相似文献   

13.
《中国化学快报》2023,34(2):107497
The most practical high-temperature proton exchange membranes (PEMs) are phosphoric acid (PA)-doped polymer electrolytes. However, due to the plasticizing effect of PA, it is a challenge to address the trade-off between the proton conductivity and the mechanical performance of these materials. Here, we report an effective strategy to fabricate robust high-temperature PEMs based on the in situ electrostatic crosslinking of polyoxometalates and polymers. A comb copolymer poly(ether-ether-ketone)-grafted-poly(2-ethyl-2-oxazoline) (PGE) with transformable side chains was synthesized and complexed with H3PW12O40 (PW) by electrostatic self-assembly, forming PGE/PW nanocomposite membranes with bicontinuous nanostructures. After a subsequent PA-treatment of these membranes, high-temperature PEMs of PGE/PW/PA ternary nanocomposites were obtained, in which the in situ electrostatic crosslinking effect between PW and PGE side chains was generated in the hydrophilic domains of the bicontinuous structures. The microphase separation structure and the electrostatic crosslinking feature endow the PGE/PW/PA membranes with excellent anhydrous proton conductive ability while retaining high mechanical performance. The membranes show a high proton conductivity of 42.5 mS/cm at 150 °C and a high tensile strength of 13 MPa. Our strategy can pave a new route based on electrostatic control to design nanostructured polymer electrolytes.  相似文献   

14.
高温质子交换膜燃料电池所面临的一个主要技术障碍是高温低湿度环境下能够具有满足电池工作条件的膜的制备.本文通过所合成的2-取代咪唑衍生物与全氟磺酸树脂的掺杂,采用溶液重铸法制备了可以在高温无水条件下工作的质子交换膜.通过2-位疏水基团的接枝,实现了非水质子传导介质的咪唑环在膜内的固定,所制备的复合质子交换膜的导质子率在160℃无水条件下达到6.8×10^-3Scm^-1;而且相比全氟磺酸均质膜,其热稳定性也有所提高.采用静电力显微镜观察到了所制备的复合质子交换膜内相互连接的离子团簇的形成;结合其质子传导活化能,提出了所制备的复合质子交换膜在120℃以下质子传导以跳跃方式为主;在120℃以上,则以咪唑环的"钟摆"形式实现质子在膜内的传输.  相似文献   

15.
曹桐  彭军  冯炎  刘孝波  黄宇敏 《应用化学》2022,39(12):1783-1802
燃料电池是以氢气、甲醇等作为燃料的一种新型能量转化装置,其中质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell, PEMFC)凭借其能量功率高、启动速度快和使用寿命长等优点已经在移动电源、潜艇和电动汽车等领域得到了广泛应用。质子交换膜(Proton Exchange Membrane, PEM)对PEMFC的性能影响最大,高效的PEMFC需要PEM具有高的质子电导率、良好的热稳定性和机械性能、低燃料渗透率以及优异的物理化学稳定性等。目前市面上多数使用的均是具有优异质子电导率的Nafion系列膜,但其存在制备困难、成本昂贵、质子电导率严重依赖湿度等缺点,在一定程度上限制了其发展。为了让PEM有更多的选择,科学家一直专注于使用新材料替代Nafion膜。近年来,科学家们模拟Nafion结构,通过合成各种侧链含磺酸基团的聚芳醚结构,使得亲水基团磺酸基和疏水基团之间形成微相分离结构,从而获得了一系列具有优异综合性能的PEM。本文将重点对侧链烷基磺化型、侧链磺化嵌段型、侧链局部密集磺化型、侧链磺化交联型和侧链磺化复合型这几种常见策略的合成方法及性能进行了综述,最后展望了侧链磺化聚芳醚在PEM领域的优势及发展前景。  相似文献   

16.
Proton exchange membranes (PEMs) are the most frequently used separators in microbial fuel cells (MFCs). The role of proton transportation in MFC performance makes PEMs one of the most important components in the cell. The effect of PEMs in MFC performance is commonly determined according to generated power density and coulombic efficiency. Nafion is the commonly used membrane in MFCs, but there are still a number of problems associated with the use of Nafion including oxygen transfer rate, cation transport and accumulation rather than protons, membrane fouling and substrate loss. Moreover, additional problems can also be attributed to the effect of PEMs including internal resistance and pH change in MFCs. Recent developments in PEM performance are attributed to two categories including utilization of other types of membranes and improvements in Nafion by pre‐treatment methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, proton exchange membranes (PEMs) based on a poly(ethylene-co-tetrafluoroethylene) (ETFE) film were synthesized through the graft copolymerization of styrene and VTMS (vinyltrimethoxysilane), or styrene and TMSPM (3-(trimethoxysilyl) propyl methacrylate) binary monomer systems using a simultaneous irradiation method. The prepared membranes with the similar degrees of grafting were investigated by measuring ion exchange capacity, proton conductivity, water uptake, chemical stability, and dimensional stability. The results indicate that the silane-crosslinked proton exchange membrane (PEM) has not only lower water uptake and dimensional change but also high proton conductivity at low humidity condition compared to non-crosslinked poly(ethylene-co-tetrafluoroethylene)-g-poly(styrene sulfonic acid) (ETFE-g-PSSA). Also, the chemical stability of silane-crosslinked fuel cell membranes was more improved than that of non-crosslinked fuel cell membrane.  相似文献   

18.
Abstract

Poly(vinyl alcohol) (PVA) is a biodegradable, water-soluble membrane that has low methanol permeation and reactive chemical functionalities. Modification of these features makes PVA an attractive proton exchange membrane (PEM) alternative to NafionTM. However, the pristine PVA membrane is a poorer proton conductor than the NafionTM membrane due to the absence of negatively charged ions. Hence, modification of PVA matrixes whilst complying with the requirements of projected applications has been examined extensively. Generally, three modification methods of PVA membranes have been highlighted in previous reports, and these are (1) grafting copolymerization, (2) physical and chemical crosslinking, and (3) blending of polymers. The use of each modification method in different applications is reviewed in this study. Although the three modification methods can improve PVA membranes, the mixed method of modification provides another attractive approach. This review covers recent studies on PVA-based PEM in different fuel cell applications, including (1) proton-exchange membrane fuel cells and (2) direct-methanol fuel cells. The challenges involved in the use of PVA-based PEM are also presented, and several approaches are proposed for further study.  相似文献   

19.
Study on proton exchange membrane (PEM) with the aim toward excellent battery performance of PEM for fuel cells has attracted increasing attention. In this work, nanocellulose (CNC) aminated by KH792 noted as NN was prepared. CNC or NN/sulfophenylated poly(ether ether ketone ketone) (sPEEKK) nanocomposite membrane (SN) or (SNN) were produced by solution mixing. SNN was further coated with tetraethyl orthosilicate (TEOS) to obtain SNNT. The properties of sPEEKK, SN, SNN, and SNNT membranes were thoroughly investigated. The proton conductivity of SN4 was 0.22 S·cm?1 at 90 °C, while a proton conductivity of 0.30 S·cm?1 was obtained for SNN4, and an even higher value of 0.36 S·cm?1 at 90 °C was obtained for the TEOS‐coated SNN4 (SNN4T). Meanwhile, SNN4T showed high thermal stability, and its Td5 was as high as 318.2 °C. Furthermore, the composite membrane coated with TEOS also presented excellent oxidative stability. The mass of SNN2T after treated in Fenton agent for 1 h at 80 °C was still retained 96.2%, and it was not fully dissolved until 11 h. It was illustrated that aminated CNC/sPEEKK nanocomposite membranes coated with TEOS is a kind of promising materials as PEMs for fuel cells. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2190–2200  相似文献   

20.
Proton‐exchange membranes (PEM), suitable for micro and small sized fuel cells, were obtained by blending sulfonated poly(ether ketone ketone) (SPEKK) polymers with different ionic exchange capacity (IEC). This approach was used to limit the amount of swelling caused by water sorption without significantly decreasing the proton conductivity of the membrane. In particular a membrane with a cocontinuous biphasic morphology was obtained by blending two SPEKKs, with respectively, an IEC equal to 1.2 and 2.08 in the weight ratio 60/40, casted from 5% (w/v) solutions in dimethylacetamide. The effect of a cocontinuous morphology on water sorption and proton conductivity in comparison to neat SPEKK was investigated. In the range of temperatures between 40 and 70 °C, which is typical for small and micro fuel cells conditions, it was found that the ratio of proton conductivity to water sorption could be maximized. This has been attributed to the presence of percolative pathways for proton transport provided by the cocontinuous morphology along with the constraint effect of the less sulfonated component on the overall capacity of swelling of the membrane. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 395–404, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号