首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
采用分子动力学模拟方法,研究了载能碳离子撞击石墨烯中Stone-Wales缺陷的动力学过程,计算了Stone-Wales缺陷中初级碰撞原子的离位阈能和载能碳离子使其移位的入射阈能,并与完美石墨烯结构计算结果进行对比。通过分析初级碰撞原子与入射离子动能和势能随时间的变化关系,研究了碰撞过程中能量转移过程。研究结果表明,初级碰撞原子产生离位并最终脱离石墨烯体系的最小能量为25.0 eV。当初始动能为23.0 eV时,Stone-Wales缺陷中2个七元环共用的碳-碳键旋转90°形成了完美的石墨烯结构。此外,还发现使Stone-Wales缺陷中初级碰撞原子发生离位的载能碳离子最小入射能为41.0 eV。  相似文献   

2.
采用分子动力学模拟方法,研究了载能碳离子撞击石墨烯中Stone-Wales缺陷的动力学过程,计算了Stone-Wales缺陷中初级碰撞原子的离位阈能和载能碳离子使其移位的入射阈能,并与完美石墨烯结构计算结果进行对比。通过分析初级碰撞原子与入射离子动能和势能随时间的变化关系,研究了碰撞过程中能量转移过程。研究结果表明,初级碰撞原子产生离位并最终脱离石墨烯体系的最小能量为25.0 eV;当初始动能为23.0 eV时,Stone-Wales缺陷中2个七元环共用的碳-碳键旋转90°形成了完美的石墨烯结构;使Stone-Wales缺陷中初级碰撞原子发生离位的载能碳离子最小入射能为41.0 eV。  相似文献   

3.
基于分子动力学方法,研究了载能碳离子碰撞锯齿形单壁碳纳米管过程中初级碰撞原子(PKA)的运动过程和能量变化过程.分析了手性指数为(2n+1,0)(n=2~9)的单壁碳纳米管中PKA的穿透能与载能碳离子入射能间的关系.结果表明,穿透能与入射能之间呈线性增长关系,线性变化的斜率与碳纳米管直径有关.通过分析PKA势能随模拟时间的变化规律,阐述了初级碰撞原子的穿透能随入射能的增加而增加的物理机制.  相似文献   

4.
采用分子动力学方法研究了碳离子碰撞碳纳米管中顶位、键中心和六元环中心的动力学过程。通过分析低、中、高3种入射能分别对碰撞过程的影响,探索了典型缺陷形成的微观演化过程。研究结果表明,碰撞碳纳米管中不同空间位置,其碰撞结果差异较大,其中顶位碰撞阈能最低,约为20 eV;碰撞六元环中心时碳管会发生严重变形,损伤最为严重。通过分析入射离子动能,碳纳米管热动能、质心动能以及势能随时间的演化规律,阐述了碰撞过程中的能量转移机制。  相似文献   

5.
采用分子动力学方法研究了碳离子碰撞碳纳米管中顶位、键中心和六元环中心的动力学过程。通过分析低、中、高3种入射能分别对碰撞过程的影响,探索了典型缺陷形成的微观演化过程。研究结果表明,碰撞碳纳米管中不同空间位置,其碰撞结果差异较大,其中顶位碰撞阈能最低,约为20 e V;碰撞六元环中心时碳管会发生严重变形,损伤最为严重。通过分析入射离子动能,碳纳米管热动能、质心动能以及势能随时间的演化规律,阐述了碰撞过程中的能量转移机制。  相似文献   

6.
Defected fullerenes in nanopeapods form bonds with the encapsulating single-walled carbon nanotubes when irradiated by an electron beam leading to changes in the guest (fullerene) and the host (nanotube). Intrinsic reaction coordinate (IRC) analysis based on B3LYP hybrid density functional theory shows that a C1-C59 defect with a single protruding C atom is initially formed from the C60(Ih) cage. The high activation energy for this step (8.37 eV (193.0 kcal/mol)), being assumed to be accessible during irradiation, is lower than that of the Stone-Wales rearrangement on the sp2 network. The binding of the defected fullerene to the nanotube is preferential, orthogonal bonds relative to the tube axis being slightly preferred. Because of the covalent bonds formed between the guest and host, the carbon network on the nanotube is locally perturbed in the vicinity of the binding site. As a result of the new bonds, bisnorcaradiene-like as well as quinonoid-like patterns appear near the binding site. These results are interpreted using orbital interaction and Clar diagram arguments. The changes in the bonding pattern on the nanotube should be significant in further functionalization of carbon nanotubes.  相似文献   

7.
We have studied the interaction of atomic hydrogen with (5,5) and (10,0) single-walled carbon nanotubes (SWNT) using density functional theory. These calculations use Gaussian orbitals and periodic boundary conditions. We compare results from the local spin density approximation, generalized gradient approximation (GGA), and hybrid density functionals. We have first kept the SWNT geometric structure fixed while a single H atom approaches the tube on top of a carbon atom. In that case, a weakly bound state with binding energies from -0.8 to -0.4 eV was found. Full geometry relaxation leads to a strong SWNT deformation, weakening the nearest C-C bonds and increasing the binding energy by about 1 eV. Full hydrogen coverage of the (5,5) SWNT converts this metallic nanotube into an insulator with a band gap of 3.4 eV for the GGA functional and 4.8 eV for the hybrid functional. Hybrid functionals perform similar to pure density functional theory functionals for the calculation of binding energies while band gaps critically depend on the functional choice.  相似文献   

8.
The adsorption of atomic and molecular hydrogen on carbon-doped boron nitride nanotubes is investigated within the ab initio density functional theory. The binding energy of adsorbed hydrogen on carbon-doped boron nitride nanotube is substantially increased when compared with hydrogen on nondoped nanotube. These results are in agreement with experimental results for boron nitride nanotubes (BNNT) where dangling bonds are present. The atomic hydrogen makes a chemical covalent bond with carbon substitution, while a physisorption occurs for the molecular hydrogen. For the H(2) molecule adsorbed on the top of a carbon atom in a boron site (BNNT + C(B)-H(2)), a donor defect level is present, while for the H(2) molecule adsorbed on the top of a carbon atom in a nitrogen site (BNNT + C(N)-H(2)), an acceptor defect level is present. The binding energies of H(2) molecules absorbed on carbon-doped boron nitride nanotubes are in the optimal range to work as a hydrogen storage medium.  相似文献   

9.
Adsorption of hydrogen molecules on platinum-doped single-walled zigzag (8,0) boron nitride (BN) nanotube is investigated using the density-functional theory. The Pt atom tends to occupy the axial bridge site of the BN tube with the highest binding energy of -0.91 eV. Upon Pt doping, several occupied and unoccupied impurity states are induced, which reduces the band gap of the pristine BN nanotube. Upon hydrogen adsorption on Pt-doped BN nanotube, the first hydrogen molecule can be chemically adsorbed on the Pt-doped BN nanotube without crossing any energy barrier, whereas the second hydrogen molecule has to overcome a small energy barrier of 0.019 eV. At least up to two hydrogen molecules can be chemically adsorbed on a single Pt atom supported by the BN nanotube, with the average adsorption energy of -0.365 eV. Upon hydrogen adsorption on a Pt-dimer-doped BN nanotube, the formation of the Pt dimer not only weakens the interaction between the Pt cluster and the BN nanotube but also reduces the average adsorption energy of hydrogen molecules. These calculation results can be useful in the assessment of metal-doped BN nanotubes as potential hydrogen storage media.  相似文献   

10.
Porous graphene has shown promise as a new generation of selective membrane for sieving atoms, ions and molecules. However, the atomistic mechanisms of permeation through defects in the graphenic lattice are still unclear and remain unobserved in action, at the atomic level. Here, the direct observation of palladium atoms from a nanoparticle passing through a defect in a single-walled carbon nanotube one-by-one has been achieved with atomic resolution in real time, revealing key stages of the atomic permeation. Bonding between the moving atom and dangling bonds around the orifice, immediately before and after passing through the subnano-pore, plays an important role in the process. Curvature of the graphenic lattice crucially defines the direction of permeation from concave to convex side due to a difference in metal-carbon bonding at the curved surfaces as confirmed by density functional theory calculations, demonstrating the potential of porous carbon nanotubes for atom sieving.  相似文献   

11.
采用密度泛函方法对氢原子在(5,5)椅型碳纳米管上的吸附进行了研究, 分别考察了氢原子覆盖度为5%和10%时的构型和吸附能. 研究结果表明, H原子吸附在管外壁要比管内壁能量上更为有利, 同时第二个H原子倾向于吸附在前一个H原子的吸附位置邻近的碳原子上. 由能带计算结果得知, 吸附一个H原子时, 椅型碳纳米管将由导体转变为半导体; 当第二个H原子处在偶数位时, 纳米管仍保持较好的导电性能, 而吸附在奇数位时将使管的传输能力减弱. 本文进一步通过分析纳米管(共轭体系的分布情况对管传输性质的变化进行解释.  相似文献   

12.
At the nanoscale a number of very high frequency oscillating systems involving relative motion with respect to a carbon nanotube have been identified. In this paper, we study the two-body systems of an atom and a fullerene C60 orbiting around a single infinitely long carbon nanotube and a fullerene C60 orbiting around a fullerene C1500. The van der Waals interaction forces are modeled using the Lennard–Jones potential together with the continuum approach for which carbon atoms are assumed to be uniformly distributed over the surfaces of both the fullerenes and the carbon nanotube. Some analytical and perturbation solutions are obtained for the regime where the attractive term of the potential energy dominates. Certain circular orbiting radii of these nanoscale systems are estimated using a stability argument and the corresponding circular orbiting frequencies can then be calculated by investigating the minimum energy configuration of their effective potential energies. We find that the circular orbiting frequencies of the various proposed nano-systems are in the gigahertz range. Finally, the classification of their orbiting paths is determined numerically.  相似文献   

13.
With the density-functional theory and nudged elastic band method, the adsorption and dissociation of the hydrogen molecule on the boron nitride (BN) nanotubes with and without defects are studied theoretically. Hydrogen molecule physically adsorbs on the surface of the BN layer and nanotubes. The dissociation of the hydrogen molecule on the surface of the perfect BN layer and nanotubes is endothermic, and the energy barrier reduces with the decrease of the diameter of the tubes, while it is still larger than 2.0 eV for the (7,0) BN nanotube. Antisite, carbon substitutional, vacancy, and Stone-Wales 5775 defects on the wall of the tube are considered. With the presence of the defects, the dissociation of the hydrogen molecule becomes exothermic and the dissociation barrier can be reduced to about 0.67 eV.  相似文献   

14.
Ni adsorption on Stone-Wales defect sites in (10,0) zigzag and (5,5) armchair single-wall carbon nanotubes was studied using the density functional theory. The stable adsorption sites and their binding energies on different Stone-Wales defect types were analyzed and compared to those on perfect side walls. It was determined that the sites formed via fusions of 7-7 and 6-7 rings are the most exothermic in the cases of (10,0) and (5,5) defective tubes. In addition C-C bonds associated with Stone-Wales defects are more reactive than the case for a perfect hexagon, thus enhancing the stability of the Ni adsorption. Moreover, the Ni adsorption was found to show a noticeable relationship to the orientation of the Stone-Wales defects with respect to the tube axis. The nature of the Ni adsorption on Stone-Wales defects that have the similar orientation is identical, in spite of the different chiralities.  相似文献   

15.
The adsorption of a H2S molecule on the surface of an MgO nanotube was investigated using density functional theory. It was found that H2S molecule can be associatively adsorbed on the tube surface without any energy barrier or it can be dissociated into –H and –SH species overcoming energy barrier of 4.03–7.77 kcal/mol. The associative adsorption is site selective so that the molecule is oriented in such a way that the sulfur atom was linked to an Mg atom. The HOMO–LUMO energy gap of the tube has slightly changed upon associative adsorption, while they were significantly influenced by dissociation process. Especially, the highest occupied molecular orbital of the tube shifts to higher energies which can facilitate electron emission current from the tube surface. Also, energy gap of the tube dramatically decreased by about 0.93–1.05 eV which influences the electrical conductivity of the tube.  相似文献   

16.
In this paper, we have investigated both the process of rare-gas atoms (He, Ne, Ar, Kr, Xe) injected into single-wall carbon nanotube (SWNT) and the mechanical oscillatory behavior of rare-gas atoms sliding in a SWCNT by using molecular dynamics simulations. The minimal diameters of SWCNT to encapsulate rare-gas atoms are obtained, which are from 6.246 to 7.828 A. The threshold energies to encapsulate rare-gas atoms in SWCNT are also presented, which are less than 0.15 eV/atom. The oscillatory frequencies of the encapsulated atoms in zigzag SWCNT have been studied. The oscillatory frequencies are insensitive to the initial kinetic energy, but they are sensitive to the lengths and the radius of the tube, and they decrease as the length and the radius of the tube increases.  相似文献   

17.
Collision and adsorption of hydrogen with high incident kinetic energies on a single-walled boron nitride (BN) nanotube have been investigated. Molecular-dynamics (MD) simulations indicate that at incident energies below 14 eV hydrogen bounces off the BN nanotube wall. On the other hand, at incident energies between 14 and 22 eV each hydrogen molecule is dissociated at the exterior wall to form two hydrogen atoms, but only one of them goes through the wall. However, at the incident energies between 23 and 26 eV all of the hydrogen atoms dissociated at the exterior wall are found to be capable of going inside the nanotube and then to recombine to form hydrogen molecules inside the nanotube. Consequently, it is determined that hydrogen should have the incident energy >22 eV to go inside the nanotube. On the other hand, we find that the collisions using the incident energies >26 eV could result in damaging the nanotube structures. In addition our MD simulations find that hydrogen atoms dissociated at the wall cannot bind to either boron or nitrogen atoms in the interior wall of the nanotube.  相似文献   

18.
Density-functional calculations of the adsorption of molecular hydrogen on a planar graphene layer and on the external surface of a (4,4) carbon nanotube, undoped and doped with lithium, have been carried out. Hydrogen molecules are physisorbed on pure graphene and on the nanotube with binding energies about 80-90 meV/molecule. However, the binding energies increase to 160-180 meV/molecule for many adsorption configurations of the molecule near a Li atom in the doped systems. A charge-density analysis shows that the origin of the increase in binding energy is the electronic charge transfer from the Li atom to graphene and the nanotube. The results support and explain qualitatively the enhancement of the hydrogen storage capacity observed in some experiments of hydrogen adsorption on carbon nanotubes doped with alkali atoms.  相似文献   

19.
聚苯乙烯修饰碳纳米管表面的研究   总被引:4,自引:0,他引:4  
利用原子转移自由基聚合方法合成了端基具有一个卤素的聚苯乙烯, 并通过叠氮化反应得到端基为叠氮基团的聚苯乙烯. 利用叠氮基与单壁或复壁碳纳米管的反应, 将聚苯乙烯接到碳纳米管的表面上, 实现了碳纳米管的化学修饰. 通过FTIR, XPS, TEM, UV和Raman光谱等技术证明了聚苯乙烯以共价键形式结合到碳纳米管表面上. 利用TGA估算出连接在碳纳米管上的聚苯乙烯的含量, 并推测出复壁碳纳米管中较多的结构缺陷更有利于聚合物的接枝.  相似文献   

20.
Adsorption of transition atoms on a (8,0) zigzag single-walled boron nitride (BN) nanotube has been investigated using density-functional theory methods. Main focuses have been placed on configurations corresponding to the located minima of the adsorbates, the corresponding binding energies, and the modified electronic properties of the BN nanotubes due to the adsorbates. We have systemically studied a series of metal adsorbates including all 3d transition-metal elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) and two group-VIIIA transition-metal elements (Pd and Pt). We found that many transition-metal atoms can be chemically adsorbed on the outer surface of the BN nanotubes and that the adsorption process is typically exothermic. Upon adsorption, the binding energies of the Sc, Ti, Ni, Pd, and Pt atoms are relatively high (>1.0 eV), while those of V, Fe, and Co atoms are modest, ranging from 0.62 to 0.92 eV. Mn atom forms a weak bond with the BN nanotube, while Zn atom cannot be chemically adsorbed on the BN nanotube. In most cases, the adsorption of transition-metal atoms can induce certain impurity states within the band gap of the pristine BN nanotube, thereby reducing the band gap. Most metal-adsorbed BN nanotubes exhibit nonzero magnetic moments, contributed largely by the transition-metal atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号