首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
采用分子动力学方法研究了碳离子碰撞碳纳米管中顶位、键中心和六元环中心的动力学过程。通过分析低、中、高3种入射能分别对碰撞过程的影响,探索了典型缺陷形成的微观演化过程。研究结果表明,碰撞碳纳米管中不同空间位置,其碰撞结果差异较大,其中顶位碰撞阈能最低,约为20 eV;碰撞六元环中心时碳管会发生严重变形,损伤最为严重。通过分析入射离子动能,碳纳米管热动能、质心动能以及势能随时间的演化规律,阐述了碰撞过程中的能量转移机制。  相似文献   

2.
采用分子动力学模拟方法,研究了载能碳离子撞击石墨烯中Stone-Wales缺陷的动力学过程,计算了Stone-Wales缺陷中初级碰撞原子的离位阈能和载能碳离子使其移位的入射阈能,并与完美石墨烯结构计算结果进行对比。通过分析初级碰撞原子与入射离子动能和势能随时间的变化关系,研究了碰撞过程中能量转移过程。研究结果表明,初级碰撞原子产生离位并最终脱离石墨烯体系的最小能量为25.0 eV。当初始动能为23.0 eV时,Stone-Wales缺陷中2个七元环共用的碳-碳键旋转90°形成了完美的石墨烯结构。此外,还发现使Stone-Wales缺陷中初级碰撞原子发生离位的载能碳离子最小入射能为41.0 eV。  相似文献   

3.
采用分子动力学模拟方法,研究了载能碳离子撞击石墨烯中Stone-Wales缺陷的动力学过程,计算了Stone-Wales缺陷中初级碰撞原子的离位阈能和载能碳离子使其移位的入射阈能,并与完美石墨烯结构计算结果进行对比。通过分析初级碰撞原子与入射离子动能和势能随时间的变化关系,研究了碰撞过程中能量转移过程。研究结果表明,初级碰撞原子产生离位并最终脱离石墨烯体系的最小能量为25.0 eV;当初始动能为23.0 eV时,Stone-Wales缺陷中2个七元环共用的碳-碳键旋转90°形成了完美的石墨烯结构;使Stone-Wales缺陷中初级碰撞原子发生离位的载能碳离子最小入射能为41.0 eV。  相似文献   

4.
基于分子动力学方法,研究了载能碳离子碰撞锯齿形单壁碳纳米管过程中初级碰撞原子(PKA)的运动过程和能量变化过程.分析了手性指数为(2n+1,0)(n=2~9)的单壁碳纳米管中PKA的穿透能与载能碳离子入射能间的关系.结果表明,穿透能与入射能之间呈线性增长关系,线性变化的斜率与碳纳米管直径有关.通过分析PKA势能随模拟时间的变化规律,阐述了初级碰撞原子的穿透能随入射能的增加而增加的物理机制.  相似文献   

5.
借助质量分析离子动能谱和串联质谱研究了由电子轰击产生的双电荷离子的单分子亚稳碎裂及碰撞诱导分解过程,讨论了两种实验方法导致的差别因素.此外,根据质量分析离子动能谱提供的双电荷离子电荷分离反应的动能释放值计算了两电荷中心间距的最小值,以判别按不同电荷分离方式碎裂的双电荷离子的过渡态结构.  相似文献   

6.
李鸿波  王珀会 《大学化学》2020,35(1):111-117
麦氏重排是对质谱分析中分子离子的重排反应提出的经验规则。对经典麦式重排的概念、裂解过程及其应用做进一步拓展,形成了广义麦式重排。在广义麦式重排中,γ-H的经典麦式重排是一步完成的六元环协同裂解,分子离子亦可通过六元环或五元环过渡态进行协同重排裂解,发生相应的γ-R、β-H(或R)的迁移,产生不同的碎片离子。这种广义麦氏重排在各种常见官能团化合物中均可发生,其在质谱解析和化合物结构研究中具有广泛应用。  相似文献   

7.
在盐酸介质中,通过四氯合锌离子诱导,碱金属离子能与反式六元瓜环端口羰基氧原子直接配位构筑形成超分子自组装体。单晶结构表明在HCl介质中,四氯合锌离子形成"蜂巢结构",而且在[ZnCl_4]~(2-)诱导作用下,碱金属离子和反式六元瓜环端口羰基氧直接配位形成一维超分子自组装体而填充在"蜂巢结构"中。  相似文献   

8.
在盐酸介质中,通过四氯合锌离子诱导,碱金属离子能与反式六元瓜环端口羰基氧原子直接配位构筑形成超分子自组装体。单晶结构表明在HCl介质中,四氯合锌离子形成"蜂巢结构",而且在[ZnCl4]2-诱导作用下,碱金属离子和反式六元瓜环端口羰基氧直接配位形成一维超分子自组装体而填充在"蜂巢结构"中。  相似文献   

9.
在盐酸介质中,通过四氯合锌离子诱导,碱金属离子能与反式六元瓜环端口羰基氧原子直接配位构筑形成超分子自组装体。单晶结构表明在HCl介质中,四氯合锌离子形成“蜂巢结构”,而且在[ZnCl4]2-诱导作用下,碱金属离子和反式六元瓜环端口羰基氧直接配位形成一维超分子自组装体而填充在“蜂巢结构”中。  相似文献   

10.
林景祥  曹荣 《中国科学B辑》2009,39(3):275-280
合成了六元瓜环与链状烷基二胺(1,2-乙二胺)形成的超分子化合物.采用X射线衍射技术测定了其晶体结构,并得到元素分析、热重、红外光谱的佐证,揭示了主客体相互作用的模式.还采用^1HNMR技术研究了溶液中六元瓜环与乙二胺的超分子相互作用.研究表明,在不同的环境下瓜环与客体采取相异的超分子作用模式,晶体结构中显示一个六元瓜环的两个端口通过离子偶极作用以不同的作用模式分别跟两个乙二胺客体分子形成一个三单元组成的超分子作用实体;而在溶液中瓜环与乙二胺的相互作用模式与晶体中的不同.  相似文献   

11.
By employing atomistic simulations based on an empirical potential model and a self-consistent-charge density-functional tight-binding method, the collision dynamics process of an energetic carbon ion impinging on the Stone-Wales defect in a single-walled carbon nanotube was investigated. The outwardly and inwardly displacement threshold energies for the primary knock-on atom in the Stone-Wales defect were calculated to be 24.0 and 25.0 eV, respectively. The final defect configuration for each case was a 5-1DB-T(DB=dangling bond) defect formed in the front surface of the nanotube. Moreover, the minimum incident energy of the projectile prompting the primary knock-on atom displacement was predicted to be 71.0 eV, and the time evolutions of the kinetic and potential energies of the projectile and the primary knock-on atom were both plotted to analyze the energy transfer process.  相似文献   

12.
Some applications of collision dynamics in the field of quadrupole mass spectrometry are presented. Previous data on the collision induced dissociation of ions in triple quadrupole mass spectrometers is reviewed. A new method to calculate the internal energy distribution of activated ions directly from the increase in the cross section for dissociation with center of mass energy is presented. This method, although approximate, demonstrates explicitly the high efficiency of transfer of translational to internal energy of organic ions. It is argued that at eV center of mass energies, collisions between protein ions and neutrals such as Ar are expected to be highly inelastic. The discovery and application of collisional cooling in radio frequency quadrupoles is reviewed. Some previously unpresented data on fragment ion energies in triple quadrupole tandem mass spectrometry are shown that demonstrate directly the loss of kinetic energy of fragment ions in the cooling process. The development of the energy loss method to measure collision cross sections of protein ions in triple quadrupole instruments is reviewed along with a new discussion of the effects of inelastic collisions in these experiments and related ion mobility experiments.  相似文献   

13.
Energy transfer in ion-surface collisional activation is characterized for 0–30 eV collisions of chromium hexacarbonyl molecular cations with a monolayer of fluorinated alkanethiolate self-assembled onto a solid gold surface. This surface was mounted on the back trapping plate of the Infinity® cell of a Bruker BioApex 7T ion cyclotron resonance mass spectrometer on the B-field axis orthogonal to the ion beam direction. Internal energy deposition was deduced from fragmentation spectra using a recursive internal energy distribution search method. The efficiency of energy transfer into the ion slowly increases with incident ion energy to a maximum value of 20% at about 23 eV collision energy. Approximate kinetic energy distributions of the fragments were measured by deducing the dependence of ion abundance on trapping potential. From the kinetic energy dependence on mass we infer that rapid decomposition of the molecular cation occurs after it recoils from the surface. Knowledge of both internal and kinetic energy distributions of collisionally activated ions enabled us to deduce the energy deposited into the self-assembled monolayer as a function of collision energy.  相似文献   

14.
A collision algorithm was used with SimIon to evaluate collision-mediated ion ejection mechanisms in the ICR MS experiment. These mechanisms were characterized based on kinetic energy, ion mass, applied trapping potential, and collision gas mass. It was found that there are three collision-based energy regimes for ion loss from a trapped-ion cell. The first region is characterized by low initial cyclotron kinetic energy, a radial ejection mode, and a very high collision ratio (>100 collisions per ejection). The second region is characterized by a medium to high initial cyclotron kinetic energy leading to axial ejection at low collision ratio (1 to 10 collisions per ejection). The third region is characterized by a high initial cyclotron kinetic energy, a radial ejection mode, and a collision ratio of unity. It was also determined that there is a radial cyclotron mode limit, approximately 40% of the cell radius, after which an ion is ejected after a single collision. This has important consequences on the damping of the FTICR signal, various cooling techniques, ion activation techniques, and the remeasurement experiment.  相似文献   

15.
The adsorption of atomic and molecular hydrogen on carbon-doped boron nitride nanotubes is investigated within the ab initio density functional theory. The binding energy of adsorbed hydrogen on carbon-doped boron nitride nanotube is substantially increased when compared with hydrogen on nondoped nanotube. These results are in agreement with experimental results for boron nitride nanotubes (BNNT) where dangling bonds are present. The atomic hydrogen makes a chemical covalent bond with carbon substitution, while a physisorption occurs for the molecular hydrogen. For the H(2) molecule adsorbed on the top of a carbon atom in a boron site (BNNT + C(B)-H(2)), a donor defect level is present, while for the H(2) molecule adsorbed on the top of a carbon atom in a nitrogen site (BNNT + C(N)-H(2)), an acceptor defect level is present. The binding energies of H(2) molecules absorbed on carbon-doped boron nitride nanotubes are in the optimal range to work as a hydrogen storage medium.  相似文献   

16.
Collision of the title ion upon a stainless steel surface at near-normal incidence leads to deposition of internal energy in a well-defined narrow distribution. The energy deposited increases with laboratory collision energy and exceeds 7 eV (average) for 100 eV collisions. The translational-to-vibrational energy transfer efficiency is 15% (assuming an infinitely massive target) at 25 eV collision energy. Comparison is made with the internal energy distributions associated with gas-phase collisional activation using both low and high ion kinetic energies. The narrowness of the distribution of internal energies, the easy access to ions excited to different extents, and the high internal energies accessible, make the ion/surface collision process superior to gas-phase collisional activation for this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号