首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
罗布麻活性成分与人血清白蛋白结合的光谱学研究   总被引:8,自引:0,他引:8  
应用荧光和紫外光谱研究了人血清白蛋白与罗布麻活性成分槲皮素(QUE)、芸香苷(RUT)和儿茶素(CAT)的结合机理. 在QUE与蛋白质浓度比小于3.5时, 其荧光猝灭机理主要是静态猝灭, 在药物浓度较高时动态猝灭所占的比例增加; RUT在整个实验浓度范围内对蛋白质的荧光猝灭机理为静态猝灭; CAT与蛋白质之间不能形成复合物, 其荧光猝灭主要由动态猝灭产生. QUE和RUT分别与蛋白质形成1∶1的复合物, 结合常数分别为(1.51±0.13)×105和(0.81±0.08)×105 L•mol-1. 由于激发态质子转移, 与蛋白质的相互作用引起QUE和RUT内源荧光发射峰强度的明显增加, 进一步证实了它们与蛋白质的结合. 与蛋白质的结合也引起了QUE紫外吸收带的明显红移, 说明药物分子中的酚羟基发生了解离, 以离子形式与蛋白质发生作用. RUT的紫外吸收谱带没有明显移动, 说明它主要以中性状态与蛋白质结合. 应用与蛋白质作用后药物分子紫外吸收光谱的二阶导数谱, 对药物与蛋白质的结合模式进行了深入探讨.  相似文献   

2.
The interaction between CdTe quantum dots (QDs) and bovine serum albumin (BSA) was systematically investigated by fluorescence, UV‐vis absorption and circular dichroism (CD) spectroscopy under physiological conditions. The experimental results showed that the fluorescence of BSA could be quenched by CdTe QDs with a static quenching mechanism, indicating that CdTe QDs could react with BSA. The quenching constants according to the modified Stern‐Volmer equation were obtained as 1.710×106, 1.291×106 and 1.010×106 L·mol?1 at 298, 304, and 310 K, respectively. ΔH, ΔS and ΔG for CdTe QDs‐BSA system were calculated to be ?33.68 kJ·mol?1, 6.254 J·mol?1·K?1 and ?35.54 kJ·mol?1 (298 K), respectively, showing that electrostatic interaction in the system played a major role. According to F?rster theory, the distance between Trp‐214 in BSA and CdTe QDs was given as 2.18 nm. The UV‐vis, synchronous fluorescence and CD spectra confirmed further that the conformations of BSA after addition of CdTe QDs have been changed.  相似文献   

3.
The interaction of plumbagin (PLU) with human serum albumin (HSA) in physiological buffer (pH=7.4) was studied by fluorescence spectroscopy. Results obtained from analysis of the fluorescence spectra indicated that PLU has a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. Fluorescence quenching data revealed that the quenching constants (K) are 4.43×104, 3.26×104 and 1.69×104 L?mol?1 at 293, 303 and 313 K, respectively. The thermodynamic parameters ΔH° and ΔS° were calculated to be ?36.63 kJ?mol?1, and ?35.702 J?mol?1?K?1 respectively, which suggested that van der Waals interactions and hydrogen bonds play a major role in the interaction of PLU with HSA. The distance between donor (HSA) and acceptor (PLU) was calculated to be 3.76 nm based on Förster’s non-radiative energy transfer theory. The results of synchronous fluorescence spectra showed that binding of PLU to HSA can induce conformational changes in HSA.  相似文献   

4.
长春新碱与人血清白蛋白的相互作用研究   总被引:7,自引:1,他引:6  
陈克海  郑学仿  郭明  曹洪玉  唐乾  杨彦杰 《化学学报》2007,65(17):1887-1891
利用荧光和圆二色光谱研究了长春新碱(VCR)与人血清白蛋白(HSA)之间的相互作用. 通过荧光猝灭测得在288, 298和308 K时, VCR与HSA的结合常数K分别为2.14×104, 1.73×104 和1.35×104 L•mol-1, 表明VCR与HSA间具有较强的结合作用, 属于静态猝灭. 计算出焓变(ΔH)为 -17.38 kJ•mol-1, 熵变(ΔS)为22.62 J•mol-1•K-1, 结合分子模型理论计算的结果, 表明VCR与HSA相互作用时在色氨酸(Trp) 214残基和VCR分子中吲哚基间作用力以疏水作用力为主, 但在 VCR和HSA 分子间以静电引力为主. 圆二色光谱(CD)的数据表明相互作用后HSA的二级结构发生了改变:HSA的α-螺旋的含量从51.7%下降到32.9%, β-折叠的含量增加了9.2%.  相似文献   

5.
Our previous experimental results have shown that ergosta‐4,6,8(14),22‐tetraen‐3‐one (ergone) is one of the main bioactive components of Polyporus umbellatus. The efficacy of ergone binding to human serum albumin (HSA) is critical for pharmacokinetic behavior of ergone. The interactions between ergone and HSA under simulative physiological conditions were investigated by the methods of fluorescence spectroscopy, absorption and circular dichroism spectroscopy. Fluorescence data revealed that the fluorescence quenching of HSA by ergone was the result of the formation of the ergone‐HSA complex. According to the modified Stern‐Volmer equation, the binding constants (Ka) between ergone and HSA were determined. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) for the reaction were calculated to be 0.989 kJ mol‐1 and 11.214 J mol‐1 K‐1, indicating that the hydrogen bonds and hydrophobic interactions played a dominant role in the binding of ergone to HSA. The conformational investigation showed that the presence of ergone decreased the α‐helical content of HSA and induced the slight unfolding of the polypeptides of protein. Furthermore, displacement experiments using warfarin and ibuprofen indicated that ergone could bind to site I of HSA, which was also in agreement with the results of the molecular modeling.  相似文献   

6.
A new platinum(IV) complex, [Pt(en)(Cl)2(Pregabalin)2], containing the drug pregabalin was synthesized and characterized by elemental analysis, FT-IR, 1H NMR, mass spectrum, thermogravimetric analysis (TGA), molecular docking and RHF/PM6 method. Also, the interaction of Pt(IV) complex with human serum albumin (HSA) was studied by using UV–vis, fluorometric, circular dichroism (CD) spectroscopies and molecular docking techniques. The results demonstrated that the binding of the complex to HSA caused strong fluorescence quenching of HSA through static quenching mechanism. Hydrogen bonds and van der Waals contacts are the major forces in the stability of protein-Pt(IV) complex and the process of the binding of complex with HSA was enthalpy driven (ΔH = –105.8?kJ·mol?1). The results of CD and UV–vis spectroscopy indicated that the binding of the complex to HSA caused conformational changes in HSA. In addition, the study of molecular docking and RHF/PM6 method confirm the experimental results with respect to the mechanism of binding.  相似文献   

7.
在模拟生理条件下,采用荧光光谱法、圆二色光谱法和红外光谱法研究了花椒油素(XT)与牛血清白蛋白(BSA)的相互作用。结果表明花椒油素与牛血清白蛋白之间发生动态和静态联合猝灭,二者间的的猝灭常数(K)在286, 298和310 K分别为3.31 × 105, 到2.03 × 105 和 0.94 × 105 L∙mol-1. 热力学参数表明, 花椒油素与牛血清白蛋白间以疏水作用力为主。圆二色光谱和红外光谱法表明加入花椒油素后,牛血清白蛋白的二级结构发生了变化,其中α-螺旋减少了3.9%。另外,我们还研究了共存离子对两者结合的影响。  相似文献   

8.
At different temperatures, the interactions between imidacloprid (IMI) and bovine serum albumin (BSA) were investigated with a fluorescence quenching spectrum, a synchronous fluorescence spectrum, a three-dimensional fluorescence spectrum and an ultraviolet-visible spectrum. The average values of bonding constants (KLB: 3.424 × 10^4 L,mol^-1), thermodynamic parameters (△H: 5.188 kJ,mol^-1, △G^(○—):-26.36 kJ,mol^-1, △S: 103.9 J,K^-1,mol^-1) and the numbers of bonding sites (n: 1.156) could be obtained through Stern-Volmer, Lineweaver-Burk and ther- modynamic equations. It was shown that the fluorescence of BSA could be quenched for its reactions with IMI to form a certain kind of new compound. The quenching belonged to a static fluorescence quenching, with a non-radiation energy transfer happening within a single molecule. The thermodynamic parameters agree with △H〉 0, △S〉0 and△G^(○-)〈0, suggesting that the binding power between IMI and BSA should be mainly a hydrophobic interaction.  相似文献   

9.
The interaction between imidacloprid (IMI) and human serum albumin (HSA) was investigated using fluorescence and UV/vis absorption spectroscopy. The experimental results showed that the fluorescence quenching of HSA by IMI was a result of the formation of IMI–HSA complex; static quenching was confirmed to result in the fluorescence quenching. The apparent binding constant KA between IMI and HSA at three differences were obtained to be 1.51 × 104, 1.58 × 104, and 2.19 × 104 L mol?1, respectively. The thermodynamic parameters, Δ and Δ were estimated to be 28.44 kJ mol?1, 174.76 J mol?1 K?1 according to the van’t Hoff equation. Hydrophobic interactions played a major role in stabilizing the complex. The distance r between donor (HSA) and acceptor (IMI) was obtained according to fluorescence resonance energy transfer. The effect of IMI on the conformation of HSA was analyzed using synchronous fluorescence spectroscopy CD and three-dimensional fluorescence spectra, the environment around Trp and Tyr residues were altered.  相似文献   

10.
The interaction of lomefloxacin (LMF) with human serum albumin (HSA) in the presence of copper ions in a physiological medium and its thermodynamic characteristics were investigated by multi-spectroscopy. The experimental results showed that both LMF and LMF-Cu^2+ could quench the fluorescence of HSA with a static quenching mechanism, indicating that LMF or LMF-Cu^2+ could react with HSA. The apparent binding constants/numbers of binding sites were estimated as 4.924± 105 Lomol 1/1.473 for LMF-HSA, 8.990± 104 L·mol^-1/1.785 for LMF- Cu^2+-HSA, 1.10± 105 L·mol^-1/1.21 for LMF-Cu^2+ and 7.30± 102 L·mol^-1/0.82 for HSA-Cu^2+, respectively. AH and AS for LMF-HSA system were calculated to be --2.189 kJ·mol^-1 and 61.25 J·mol^-1·K^-1, while those for LMF-Cu^2+-HSA system were -7.401 kJ·mol^-1 and 47.63 J·mol^-1·K^-1 Although the values of AH and AS in these two systems were different, the treads were similar, which indicated that electrostatic interactions in these two systems played a major role. According to Forster theory, the distances were given as 5.006 nm for HSA-LMF and 4.709 nm for HSA-LMF-Cu^2+. Synchronous fluorescence and circular dichroism spectra confirmed further that the conformations of human serum albumin before and after interacting with LMF or LMF-Cu^2+ were different. All the results revealed that copper ions promoted the interaction of lomefloxacin with human serum albumin.  相似文献   

11.
The low‐energy negative ion phosphoTyr to C‐terminal ‐CO2PO3H2 rearrangement occurs for energised peptide [M–H] anions even when there are seven amino acid residues between the pTyr and C‐terminal amino acid residues. The rearranged C‐terminal ‐CO2PO2H(O) group effects characteristic SNi cyclisation/cleavage reactions. The most pronounced of these involves the electrophilic central backbone carbon of the penultimate amino acid residue. This reaction is aided by the intermediacy of an H‐bonded intermediate in which the nucleophilic and electrophilic reaction centres are held in proximity in order for the SNi cyclisation/cleavage to proceed. The ΔGreaction is +184 kJ mol?1 with the barrier to the SNi transition state being +240 kJ mol?1 at the HF/6‐31 + G(d)//AM1 level of theory. A similar phosphate rearrangement from pTyr to side chain CO2 (of Asp or Glu) may also occur for energised peptide [M–H] anions. The reaction is favourable: ΔGreaction is ?44 kJ mol?1 with a maximum barrier of +21 kJ mol?1 (to the initial transition state) when Asp and Tyr are adjacent. The rearranged species R1‐Tyr‐NHCH(CH2CO2PO3H)COR2 (R1 = CHO; R2 = OCH3) may undergo an SNi six‐centred cyclisation/cleavage reaction to form the product anion R1‐Tyr(NH). This process has a high energy requirement [ΔGreaction = +224 kJ mol?1, with the barrier to the SNi transition state being +299 kJ mol?1]. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A La(III) complex, [LaIIICl2(NOR)2]Cl (2), containing norfloxacin (NOR) (1), a synthetic fluoroquinolone antibacterial agent, has been synthesized and characterized by elemental analysis, IR, UV–vis spectra and 1H NMR spectroscopy, and molar conductance measurements. The interaction between 2 and CT-DNA was investigated by steady-state absorption and fluorescence techniques in different pH media, and showed that 2 could bind to CT-DNA presumably via non-intercalative mode and the La(III) complex showed moderate ability to bind CT-DNA compared to other La(III) complexes. The binding site number n, and apparent binding constant KA, corresponding thermodynamic parameters ΔG#, ΔH#, ΔS# at different temperatures were calculated. The binding constant (KA) values are 0.23 ± 0.05, 0.56 ± 0.05, and 0.18 ± 0.08 × 105 L mol?1 for pH 4, 7, and 11, respectively. It was also found that the fluorescence quenching mechanism of CT-DNA by La(III) complex was a static quenching process.  相似文献   

13.
A new water-soluble Cu(II) complex containing ranitidine drug and 1,10-phenanthroline was synthesized and characterized by elemental analysis, molar conductivity, spectroscopic and computational methods. In vitro human serum albumin (HSA)-interaction studies of Cu(II) complex were performed by employing fluorescence spectroscopy in combination with UV–vis absorption and circular dichroism (CD) spectroscopies. The results of fluorescence titration showed that Cu(II) complex strongly quenched the intrinsic fluorescence of HSA through a static quenching mechanism with an intrinsic binding constant (6.05 × 104 M?1) at 286 K. The thermodynamic parameters ΔG, ΔH, and ΔS at different temperatures were calculated and suggested that the hydrophobic and hydrogen bonding interactions play major roles in Cu(II) complex-HSA association. The displacement experiments using warfarin and ibuprofen as site I and II probes proved that the Cu(II) complex could bind to site I (subdomain IIA) of HSA. Finally, CD spectra indicated that the interaction of the Cu(II) complex with HSA leads to an increase in the α-helical content. The main result of this study was the finding that the binding affinity of the Cu(II) complex to HSA is three orders of magnitude stronger than that of ranitidine drug.  相似文献   

14.
The interaction between Puerarin with human serum albumin has been studied for the first time by spectroscopic methods including fluorescence quenching technology, circular dichroism (CD) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy under simulative physiological conditions. The results of fluorescence titration revealed that Puerarin can strongly quench the intrinsic fluorescence of HSA by static quenching and there is a single class of binding site on HSA. In addition, the studies of CD spectroscopy and FT-IR spectroscopy showed that the binding of Puerarin to HSA changed slightly molecular conformation of HSA. Furthermore, the thermodynamic functions ΔH0 and ΔS0 for the reaction were calculated to be −9.067 kJ mol−1 and 54.315 J mol−1 K−1 according to van’t Hoff equation. These data suggested that both hydrogen bond and hydrophobic interaction play a major role in the binding of Puerarin to HSA, which is in good agreement with the result of molecular modeling study.  相似文献   

15.
Pyrazosulfuron-ethyl (PY) is a sulfonylurea herbicide developed by DuPont which has been widely used for weed control in cereals. The determination of PY binding affinity and binding site in human serum albumin (HSA) by spectroscopic methods is the subject of this work. From the fluorescence emission, circular dichroism and three-dimensional fluorescence results, the interaction of PY with HSA caused secondary structure changes in the protein. Fluorescence data demonstrated that the quenching of HSA fluorescence by PY was the result of the formation of HSA–PY complex at 1:1 molar ratio, a static mechanism was confirmed to lead to the fluorescence quenching. Hydrophobic probe 8-anilino-1-naphthalenesulfonic acid (ANS) displacement results show that hydrophobic patches are the major sites for PY binding on HSA. The thermodynamic parameters ΔH° and ΔS° were calculated to be ?36.32 kJ mol?1 and ?35.91 J mol?1 K?1, which illustrated van der Waals forces and hydrogen bonds interactions were the dominant intermolecular force in stabilizing the complex. Also, site marker competitive experiments showed that the binding of PY to HSA took place primarily in subdomain IIA (Sudlow's site I). What presented in this paper binding research enriches our knowledge of the interaction between sulfonylurea herbicides and the physiologically important protein HSA.  相似文献   

16.
Ronidazole (RNZ) is widely used for the therapeutic treatment of farmed animals and is suspected of being a human carcinogen and mutagen. The interaction between RNZ and human serum albumin (HSA) was investigated systematically by fluorescence spectroscopy, synchronous fluorescence, three-dimensional fluorescence, CD spectroscopy, UV–vis absorption spectroscopy and a molecular docking study. The results indicate that the probable quenching mechanism of HSA by RNZ is dynamic quenching. The corresponding thermodynamic parameters, such as ΔH, ΔS and ΔG, etc., were calculated according to the van’t Hoff equation. The results indicate that the forces acting between RNZ and HSA are mainly hydrogen bonds and van der Waals forces. The conformational changes in the interaction were studied by synchronous fluorescence, CD spectroscopy and three-dimensional fluorescence spectra. The results reveal that the microenvironment and conformation of HSA has been changed. A molecular modeling study further confirmed the binding mode obtained by the experimental studies.  相似文献   

17.
In this paper, several rare earth [terbium(III), ytterbium(III) and yttrium(III)] complexes containing 2,9-dimethyl-1,10-phenanthroline (Me2Phen) were successfully synthesized and characterized by means of elemental analysis (CHN), infrared spectroscopy (FT-IR), UV–vis absorption spectroscopy and 1HNMR. To explore the potential medicinal value of these complexes (MMe2Phen), their binding interactions with human serum albumin (HSA) were investigated through UV–vis and fluorescence spectroscopies and also molecular docking examinations. The thermodynamic parameters, binding forces and Förster resonance distance between these complexes and Trp-214 of HSA were estimated from the analysis of fluorescence measurements. The values of estimated binding constants (Kb) ranging for the formation of MMe2Phen:HSA complex were in the order of 105 M?1. The thermodynamic parameters determined by van’t Hoff analysis of KbH°?<?0 and ΔS°?<?0) clearly indicate the major rules of hydrogen bonds and van der Waals interactions in the formation process of MMe2Phen:HSA. The values of Stern–Volmer constant and the evaluation of dynamic quenching constant at various temperatures provided good evidences for static quenching mechanism. Furthermore, the results of molecular docking calculation and competitive binding experiments represent the binding of these complexes to site 3 of HSA located in subdomain IB, containing both polar and apolar residues. The consistency of computational and experimental results, according to the binding sites and the order of binding affinities (TbMe2Phen?>?YbMe2Phen?>?YMe2Phen), supports the accuracy of docking calculation.  相似文献   

18.
The kinetics of the interaction of L ‐asparagine with [Pt(ethylenediamine)(H2O)2]2+ have been studied spectrophotometrically as a function of [Pt(ethylenediamine)(H2O)22+], [L ‐asparagine], and temperature at pH 4.0, where the substrate complex exists predominantly as the diaqua species and L ‐asparagine as the zwitterion. The substitution reaction shows two consecutive steps: the first step is the ligand‐assisted anation and the second one is the chelation step. Activation parameters for both the steps have been calculated using Eyring equation. The low ΔH1 (43.59 ± 0.96 kJ mol?1) and large negative values of ΔS1 (?116.98 ± 2.9 J K?1 mol?1) as well as ΔH2 (33.78 ± 0.51 kJ mol?1) and ΔS2 (?221.43 ± 1.57 J K?1 mol?1) indicate an associative mode of activation for both the aqua ligand substitution processes. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 252–259, 2003  相似文献   

19.
Two water‐soluble 6‐(pyrazin‐2‐yl)‐1,3,5‐triazine‐2,4‐diamino (pzta)‐based Cu(II) complexes, namely [Cu(l ‐Val)(pzta)(H2O)]ClO4 ( 1 ) and [Cu(l ‐Thr)(pzta)(H2O)]ClO4 ( 2 ) (l ‐Val: l ‐valinate; l ‐Thr: l ‐threoninate), were synthesized and characterized using elemental analyses, molar conductance measurements, spectroscopic methods and single‐crystal X‐ray diffraction. The results indicated that the molecular structures of the complexes are five‐coordinated and show a distorted square‐pyramidal geometry, in which the central copper ions are coordinated to N,N atoms of pzta and N,O atoms of amino acids. The interactions of the complexes with DNA were investigated using electronic absorption, competitive fluorescence titration, circular dichroism and viscosity measurements. These studies confirmed that the complexes bind to DNA through a groove binding mode with certain affinities (Kb = 4.71 × 103 and 1.98 × 103 M?1 for 1 and 2 , respectively). The human serum albumin (HSA) binding properties of the complexes were also evaluated using fluorescence and synchronous fluorescence spectroscopies, indicating that the complexes could quench the intrinsic fluorescence of HSA in a static quenching process. The relevant thermodynamic parameters revealed the involvement of van der Waals forces and hydrogen bonds in the formation of complex–HSA systems. Finally, molecular docking technology was also used to further verify the interactions of the complexes with DNA/HSA.  相似文献   

20.
The dynamic behavior of the N,N,N′,N′‐tetramethylethylenediamine (tmeda) ligand has been studied in solid lithium‐fluorenide(tmeda) ( 3 ) and lithium‐benzo[b]fluorenide(tmeda) ( 4 ) using CP/MAS solid‐state 13C‐ and 15N‐NMR spectroscopy. It is shown that, in the ground state, the tmeda ligand is oriented parallel to the long molecular axis of the fluorenide and benzo[b]fluorenide systems. At low temperature (<250 K), the 13C‐NMR spectrum exhibits two MeN signals. A dynamic process, assigned to a 180° rotation of the five‐membered metallacycle (π‐flip), leads at elevated temperatures to coalescence of these signals. Line‐shape calculations yield ΔH?=42.7 kJ mol?1, ΔS?=?5.3 J mol?1 K?1, and =44.3 kJ mol?1 for 3 , and ΔH?=36.8 kJ mol?1, ΔS?=?17.7 J mol?1 K?1, and =42.1 kJ mol?1 for 4 , respectively. A second dynamic process, assigned to ring inversion of the tmeda ligand, was detected from the temperature dependence of T1ρ, the 13C spin‐lattice relaxation time in the rotating frame, and led to ΔH?=24.8 kJ mol?1, ΔS?=?49.2 J mol?1 K?1, and =39.5 kJ mol?1 for 3 , and ΔH?=18.2 kJ mol?1, ΔS?=?65.3 J mol?1 K?1, and =37.7 kJ mol?1 for 4 , respectively. For (D12)‐ 3 , the rotation of the CD3 groups has also been studied, and a barrier Ea of 14.1 kJ mol?1 was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号