首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mono‐lancunary keggin‐type decatungstosilicate (SiW11) polyoxometalate (POM) modified by γ‐aminopropyltriethoxysilane (KH550) was incorporated into polyimide (PI) through copolymerization. Nuclear magnetic resonance (NMR), fourier transition infrared spectroscopy (FTIR), and wide angle X‐ray diffraction (WAXD) were used to characterize the structure and composition of the polyoxometalate–organosilane hybrid (SiW11KH550) and PI/SiW11KH550 copolymers. The differential scanning calorimetry (DSC) studies indicate that the glass transition temperature (Tg) of PI/SiW11KH550 copolymers increases from 330°C (for neat PI) to 409°C (for the copolymer sample with 10 wt% of SiW11KH550). Dielectric measurement showed that both the dielectric constant and the dielectric loss for the copolymer thin films decreased with the increase in SiW11KH550 content, and the dielectric constant and dielectric loss values decreased to 2.1 and 3.54 × 10?3, respectively, for the copolymer sample with 10 wt% of SiW11KH550. The incorporation of SiW11KH550 into polymer matrices is a promising approach to prepare PI films with a low dielectric constant and low dielectric loss. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A mononuclear‐cobalt(II)‐substituted silicotungstate, K10[Co(H2O)2(γ‐SiW10O35)2] ? 23 H2O (POM‐ 1 ), has been evaluated as a light‐driven water‐oxidation catalyst. With in situ photogenerated [Ru(bpy)3]3+ (bpy=2,2′‐bipyridine) as the oxidant, quite high catalytic turnover number (TON; 313), turnover frequency (TOF; 3.2 s?1), and quantum yield (ΦQY; 27 %) for oxygen evolution at pH 9.0 were acquired. Comparison experiments with its structural analogues, namely [Ni(H2O)2(γ‐SiW10O35)2]10? (POM‐ 2 ) and [Mn(H2O)2(γ‐SiW10O35)2]10? (POM‐ 3 ), gave the conclusion that the cobalt center in POM‐ 1 is the active site. The hydrolytic stability of the title polyoxometalate (POM) was confirmed by extensive experiments, including UV/Vis spectroscopy, linear sweep voltammetry (LSV), and cathodic adsorption stripping analysis (CASA). As the [Ru(bpy)3]2+/visible light/sodium persulfate system was introduced, a POM–photosensitizer complex formed within minutes before visible‐light irradiation. It was demonstrated that this complex functioned as the active species, which remained intact after the oxygen‐evolution reaction. Multiple experimental parameters were investigated and the catalytic activity was also compared with the well‐studied POM‐based water‐oxidation catalysts (i.e., [Co4(H2O)2(α‐PW9O34)2]10? (Co4‐POM) and [CoIIICoII(H2O)W11O39]7? (Co2‐POM)) under optimum conditions.  相似文献   

3.
A new series of organometallic/inorganic composite Langmuir‐Blodgett (LB) films consisting of a rigid‐rod polyplatinyne polymer coordinated with 2,7‐bis(buta‐1,3‐diynyl)‐9,9‐dihexylfluorene (denoted as PtP) as the π‐conjugated organometallic molecule, an europium‐substituted polyoxometalate (POM; POM = Na9EuW10O36, K13[Eu(SiW11O39)2] and K5[Eu(SiW11O39)(H2O)2]) as the inorganic component, and an amphiphilic behenic acid (BA) as the auxiliary film‐forming agent were prepared. Structural and photophysical characterization of these LB films were achieved by π–A isotherms, absorption and photoluminescence spectra, atomic force microscopy imaging, scanning tunneling microscopy, and low‐angle X‐ray diffraction. Our experimental results indicate that stable, well‐defined, and well‐organized Langmuir and LB films are formed in pure water and POM subphases, and the presence of Eu‐based POM in the subphase causes an area expansion. It is proposed that a lamellar layered structure exists for the PtP/BA/POM LB film in which the POM and PtP molecules can lay down with the interfacial planes. Luminescence spectra of the prepared hybrid LB films show that near‐white emission spectra can be obtained due to the dual‐emissive nature of the mixed PtP/POM blends. These Pt‐polyyne‐based LB films displayed interesting electric conductivity behavior. Among them, PtP/BA/POM 13‐layer films showed a good electrical response, with the tunneling current up to ±100 nA when the voltage was monitored between ?1 and 7 V. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 879–888, 2010  相似文献   

4.
Corrosion is a global problem for any metallic structure or material. Herein we show how metals can easily be protected against acid corrosion using hydrophobic polyoxometalate‐based ionic liquids (POM‐ILs). Copper metal disks were coated with room‐temperature POM‐ILs composed of transition‐metal functionalized Keggin anions [SiW11O39TM(H2O)]n? (TM=CuII, FeIII) and quaternary alkylammonium cations (CnH2 n+1)4N+ (n=7–8). The corrosion resistance against acetic acid vapors and simulated “acid rain” was significantly improved compared with commercial ionic liquids or solid polyoxometalate coatings. Mechanical damage to the POM‐IL coating is self‐repaired in less than one minute with full retention of the acid protection properties. The coating can easily be removed and recovered by rinsing with organic solvents.  相似文献   

5.
The reaction of Keggin‐type polyoxometalate (POM) units, transition‐metal (TM) ions, and a rigid bis(imidazole) ligand (1,4‐bis(1‐imidazolyl)benzene (bimb)) in a hydrothermal environment led to the isolation of four new POM‐based metal–organic networks, [H2L][CuL][SiW12O40]?2 H2O ( 1 ), [H2L]2[Co(H2O)3L][SiW11CoO39]?6 H2O ( 2 ), KH[CuL]2[SiW11CoO39(H2O)]?2 H2O ( 3 ), and [CuL]4[GeW12O40]?H2O ( 4 ; L=bimb). All four compounds were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X‐ray diffraction, and single‐crystal X‐ray diffraction. Compounds 1 and 3 are new 3D networks with 1D channels. Compounds 2 and 4 contain 2D networks, which further stack into 3D supramolecular networks. The contributions of pH value, the negative charge of the POM, and the TM coordination modes to the construction of 3D networks were elucidated by comparing the synthetic conditions and structures of compounds 1 – 4 . The photocatalytic properties of compounds 1 – 4 were investigated using methylene blue (MB) degradation under UV light. All compounds showed good catalytic activity and structural stability. The possible catalytic mechanism was discussed on the basis of active‐species trapping experiments. The different photocatalytic activities of compounds 1 – 4 were explained by comparison of the band gaps of different POM species and different packing modes of POM units in these hybrid compounds.  相似文献   

6.
Organosilyl/‐germyl polyoxotungstate hybrids [PW9O34(tBuSiO)3Ge(CH2)2CO2H]3? ( 1 a ), [PW9O34(tBuSiO)3Ge(CH2)2CONHCH2C?CH]3? ( 2 a ), [PW11O39Ge(CH2)2CO2H]4? ( 3 a ), and [PW11O39Ge(CH2)2CONHCH2C≡CH]4? ( 4 a ) have been prepared as tetrabutylammonium salts and characterized in solution by multinuclear NMR spectroscopy. The crystal structure of (NBu4)3 1 a? H2O has been determined and the electrochemical behavior of 1 a and 2 a has been investigated by cyclic voltammetry. Covalent grafting of 2 a onto an n‐type silicon wafer has been achieved and the electrochemical behavior of the grafted clusters has been investigated. This represents the first example of covalent grafting of Keggin‐type clusters onto a Si surface and a step towards the realization of POM‐based multilevel memory devices.  相似文献   

7.
A novel nanosized biological active multilayer film composed of polyoxometalate (POM) anion α-[SiW11O39Co(H2PO4)]7−(abbr. SiW11Co-PO4) and poly(diallyldi methylammonium chloride) (abbr. PDDA) was fabricated by layer-by-layer self-assembly (LBL). The composition and growth processes of the films have been determined by X-ray photoelectron spectra (XPS) and ultraviolet-visible absorption spectra (UV). The composite film was formed by the alternate adsorption of SiW11Co-PO4 and PDDA, and the deposition process was quantitative and highly reproducible from layer to layer. The morphology of the film was studied by atomic force microscopy (AFM), which showed that the film was relatively uniform and smooth, and POM anions aggregated into nanoclusters distributing on the surface uniformly. The film exhibited favorable electrochemical behavior of POM indicated by cyclic voltammetry (CV). The film can immobilize the DNA molecules via Mg2+-bridging medium.  相似文献   

8.
The bioconjugation of polyoxometalates (POMs), which are inorganic metal oxido clusters, to DNA strands to obtain functional labeled DNA primers and their potential use in electrochemical detection have been investigated. Activated monooxoacylated polyoxotungstates [SiW11O39{Sn(CH2)2CO}]8? and [P2W17O61{Sn(CH2)2CO}]6? have been used to link to a 5′‐NH2 terminated 21‐mer DNA forward primer through amide coupling. The functionalized primer was characterized by using a battery of techniques, including electrophoresis, mass spectrometry, as well as IR and Raman spectroscopy. The functionality of the POM‐labeled primers was demonstrated through hybridization with a surface‐immobilized probe. Finally, the labeled primers were successfully used in the polymerase chain reaction (PCR) and the PCR products were characterized by using electrophoresis.  相似文献   

9.
Single‐walled carbon nanotubes (SWNTs) covalently functionalized with redox‐active organo‐modified polyoxometalate (POM) clusters have been synthesized and employed as electrode materials in lithium ion batteries. The Anderson cluster [MnMo6O24]9? is functionalized with Tris (NH2C(CH2OH)3) moieties, giving the new organic–inorganic hybrid [N(nC4H9)4]3[MnMo6O18{(OCH2)3CNH2}2]. The compound is then covalently attached to carboxylic acid‐functionalized SWNTs by amide bond formation and the stability of this nanocomposite is confirmed by various spectroscopic methods. Electrochemical analyses show that the nanocomposite displays improved performance as an anode material in lithium ion batteries compared with the individual components, that is, SWNTs and/or Anderson clusters. High discharge capacities of up to 932 mAh g?1 at a current density of 0.5 mA cm?2 can be observed, together with high long‐term cycling stability and decreased electrochemical impedance. Chemisorption of the POM cluster on the SWNTs is shown to give better electrode performance than the purely physisorbed analogues.  相似文献   

10.
A hybrid compound consisting of palladium(salen) [salen = N,N′‐bis(salicylidene)ethylenediamine] complex covalently linked to a lacunary Keggin‐type polyoxometalate, K8[SiW11O39](POM), was synthesized and characterized by FT‐IR, elemental analysis, inductively coupled plasma and diffuse reflectance UV–visible spectroscopic methods. The hybrid, [Pd(salen)–POM], was investigated in the Suzuki cross‐coupling in EtOH/H2O under mild reaction conditions. In comparison to the corresponding organic and inorganic moiety, the hybrid has shown greatly improved catalytic activity, and much higher yields toward coupling products were obtained with a low catalyst loading for various aryl halides, including unreactive and sterically hindered ones. The catalyst also exhibited prominent recyclable performance and no obvious loss of activity was observed after six consecutive runs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Two new polyoxometalate (POM)‐based hybrid monomers (Bu4N)5(H)[P2V3W15O59{(OCH2)3CNHCO(CH3)C?CH2}] ( 2 ) and (S(CH3)2C6H4OCOC(CH3)=CH2)6[PVMo10O40] ( 5 ) were developed by grafting polymerizable organic units covalently or electrostatically onto Wells–Dawson and Keggin‐type clusters and were characterized by analytical and spectroscopic techniques including ESI‐MS and/or single‐crystal X‐ray diffraction analyses. Radical initiated polymerization of 2 and 5 with organic monomers (methacryloyloxy)phenyldimethylsulfonium triflate (MAPDST) and/or methylmethacrylate (MMA) yielded a new series of POM/polymer hybrids that were characterized by 1H, 31P NMR and IR spectroscopic techniques, gel‐permeation chromatography as well as thermal analyses. Preliminary tests were conducted on these POM/polymer hybrids to evaluate their properties as photoresists using electron beam (E‐beam)/extreme ultraviolet (EUV) lithographic techniques. It was observed that the POM/polymer hybrid of 2 with MAPDST exhibited improved sensitivity under EUV lithographic conditions in comparison to the MAPDST homopolymer resist possibly due to the efficient photon harvesting by the POM clusters from the EUV source.  相似文献   

12.
Three novel hexa‐Ni‐substituted Dawson phosphortungstates [Ni6(en)3(H2O)63‐OH)3(H3P2W15O56)] ? 14 H2O ( 1 ), [Ni(enMe)2(H2O)][Ni6(enMe)33‐OH)3(H2O)6(HP2W15O56)] ? 10 H2O ( 2 ), and [Ni(enMe)2]3[Ni(enMe)2(H2O)][Ni(enMe)(H2O)2][Ni6(enMe)33‐OH)3(Ac)2(H2O)(P2W15O56)]2 ? 6 H2O ( 3 ) (en=ethylenediamine, enMe=1, 2‐diaminopropane, Ac=CH3COO?) have been made under hydrothermal conditions and were characterized by IR spectroscopy, elemental analysis, diffuse reflectance spectroscopy, thermogravimetric analysis, powder X‐ray diffraction, and single‐crystal X‐ray diffraction. The common structural features of compounds 1 – 3 contain the similar hexa‐Ni‐substituted Dawson polyoxometalate (POM) units that can be viewed as a [Ni63‐OH)3]9+ cluster capping on a [P2W15O56]12? fragment. Compounds 1 and 2 are two isolated clusters, whereas compound 3 is the first 3D POM framework constructed from hexa‐Ni‐substituted Dawson POM units and Ni(enMe) complex bridges. The preparations of compounds 1 – 3 not only indicate that triangle coplanar Ni6 clusters are very stable fragments in both trivacant Keggin and trivacant Dawson POM systems, but also offer that the hydrothermal technique can act as an effective strategy for making novel Dawson‐type high‐nuclear transition‐metal cluster substituted POMs by combination of lacunary Dawson precusors with transition‐metal cations in the tunable role of organic ligands. In addition, magnetic measurements illustrate that there exist overall ferromagnetic interactions in compound 3 .  相似文献   

13.
Nanoparticulate gold supported on a Keggin‐type polyoxometalate (POM), Cs4[α‐SiW12O40]?n H2O, was prepared by the sol immobilization method. The size of the gold nanoparticles (NPs) was approximately 2 nm, which was almost the same as the size of the gold colloid precursor. Deposition of gold NPs smaller than 2 nm onto POM (Au/POM) was essential for a high catalytic activity for CO oxidation. The temperature for 50 % CO conversion was ?67 °C. The catalyst showed extremely high stability for at least one month at 0 °C with full conversion. The catalytic activity and the reaction mechanism drastically changed at temperatures higher than 40 °C, showing a unique behavior called a U‐shaped curve. It was revealed by IR measurement that Auδ+ was a CO adsorption site and that adsorbed water promoted CO oxidation for the Au/POM catalyst. This is the first report on CO oxidation utilizing Au/POMs catalysts, and there is a potential for expansion to various gas‐phase reactions.  相似文献   

14.
A polyoxometalate of the Keggin structure substituted with RuIII, 6Q5[RuIII(H2O)SiW11O39] in which 6Q=(C6H13)4N+, catalyzed the photoreduction of CO2 to CO with tertiary amines, preferentially Et3N, as reducing agents. A study of the coordination of CO2 to 6Q5[RuIII(H2O)SiW11O39] showed that 1) upon addition of CO2 the UV/Vis spectrum changed, 2) a rhombic signal was obtained in the EPR spectrum (gx=2.146, gy=2.100, and gz=1.935), and 3) the 13C NMR spectrum had a broadened peak of bound CO2 at 105.78 ppm (Δ1/2=122 Hz). It was concluded that CO2 coordinates to the RuIII active site in both the presence and absence of Et3N to yield 6Q5[RuIII(CO2)SiW11O39]. Electrochemical measurements showed the reduction of RuIII to RuII in 6Q5[RuIII(CO2)SiW11O39] at ?0.31 V versus SCE, but no such reduction was observed for 6Q5[RuIII(H2O)SiW11O39]. DFT‐calculated geometries optimized at the M06/PC1//PBE/AUG‐PC1//PBE/PC1‐DF level of theory showed that CO2 is preferably coordinated in a side‐on manner to RuIII in the polyoxometalate through formation of a Ru? O bond, further stabilized by the interaction of the electrophilic carbon atom of CO2 to an oxygen atom of the polyoxometalate. The end‐on CO2 bonding to RuIII is energetically less favorable but CO2 is considerably bent, thus favoring nucleophilic attack at the carbon atom and thereby stabilizing the carbon sp2 hybridization state. Formation of a O2C–NMe3 zwitterion, in turn, causes bending of CO2 and enhances the carbon sp2 hybridization. The synergetic effect of these two interactions stabilizes both Ru–O and C–N interactions and probably determines the promotional effect of an amine on the activation of CO2 by [RuIII(H2O)SiW11O39]5?. Electronic structure analysis showed that the polyoxometalate takes part in the activation of both CO2 and Et3N. A mechanistic pathway for photoreduction of CO2 is suggested based on the experimental and computed results.  相似文献   

15.
The design of structurally well‐defined anionic molecular metal–oxygen clusters, polyoxometalates (POMs), leads to inorganic receptors with unique and tunable properties. Herein, an α‐Dawson‐type silicotungstate, TBA8[α‐Si2W18O62] ? 3 H2O ( II ) that possesses a ?8 charge was successfully synthesized by dimerization of a trivacant lacunary α‐Keggin‐type silicotungstate TBA4H6[α‐SiW9O34] ? 2 H2O ( I ) in an organic solvent. POM II could be reversibly protonated (in the presence of acid) and deprotonated (in the presence of base) inside the aperture by means of intramolecular hydrogen bonds with retention of the POM structure. In contrast, the aperture of phosphorus‐centered POM TBA6[α‐P2W18O62]?H2O ( III ) was not protonated inside the aperture. The density functional theory (DFT) calculations revealed that the basicities and charges of internal μ3‐oxygen atoms were increased by changing the central heteroatoms from P5+ to Si4+, thereby supporting the protonation of II . Additionally, II showed much higher catalytic performance for the Knoevenagel condensation of ethyl cyanoacetate with benzaldehyde than I and III .  相似文献   

16.
The introduction of an extended bridging bis(triazole) ligand, that is, 4,4′‐bis(1,2,4‐triazol‐1‐ ylmethyl)biphenyl (BBPTZ), into the hydrothermal reaction system containing transition metal ions and Keggin‐type polyoxometalates (POMs) led to the isolation of three new organic–inorganic hybrid entangled coordination networks, [CuI2CuII(BBPTZ)6][SiW12O40]?12 H2O ( 1 ), [Ni(BBPTZ)2(H2O)][H2SiW12O40]?11 H2O ( 2 ), and [Ni2(BBPTZ)4(H2O)2][SiW12O40]?3 H2O ( 3 ). All three compounds were characterized by elemental analysis, IR spectroscopy, TG analysis, powder X‐ray diffraction, and single‐crystal X‐ray diffraction. Compound 1 contains a 2‐D POM‐based metal–organic layer entangled with 1‐D ladder‐like metal–organic chains. The adjacent 2‐D networks are parallel to each other, further stacking into a 3‐D supramolecular framework with 1‐D channels. Compound 2 exhibits a 1‐D cantilever‐type loop‐containing chain. The Keggin‐type POMs act as the cantilever groups, leading to the adjacent catilever‐type chains interwaving together to form a 3‐D supramolecular open framework with two types of channels. Compound 3 possesses a 3‐D open framework based on 2‐D metal–organic undulated layer and Keggin‐type POM clusters. Three sets of such frameworks further interpenetrate with each other to form an interesting three‐fold interpenetrating framework. The photocatalytic activities of compounds 1–3 for the decomposition of methylene blue (MB) under UV light have been investigated.  相似文献   

17.
Three hybrid coordination networks that were constructed from ?‐Keggin polyoxometalate building units and imidazole‐based bridging ligands were prepared under hydrothermal conditions, that is, H[(Hbimb)2(bimb){Zn4PMoV8MoVI4O40}] ? 6 H2O ( 1 ), [Zn(Hbimbp)(bimbp)3{Zn4PMoV8MoVI4O40}] ? DMF ? 3.5 H2O ( 2 ), and H[Zn2(timb)2(bimba)2Cl2{Zn4PMoV8MoVI4O40}] ? 7 H2O ( 3 ) (bimb=1,4‐bis(1‐imidazolyl)benzene, bimbp=4,4′‐bis(imidazolyl)biphenyl, timb=1,3,5‐tris(1‐imidazolyl)benzene, bimba=3,5‐bis(1‐imidazolyl)benzenamine). All three compounds were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, and single‐crystal X‐ray diffraction. The mixed valence of the Mo centers was analyzed by XPS spectroscopy and bond‐valence sum calculations. In all three compounds, the ?‐Keggin polyoxometalate (POM) units acted as nodes that were connected by rigid imidazole‐based bridging ligands to form hybrid coordination networks. In compound 1 , 1D zigzag chains extended to form a 3D supramolecular architecture through intermolecular hydrogen‐bonding interactions. Compound 2 consisted of 2D curved sheets, whilst compound 3 contained chiral 2D networks. Because of the intrinsic reducing properties of ?‐Keggin POM species, noble‐metal nanoparticles were loaded onto these POM‐based coordination networks. Thus, compounds 1 – 3 were successfully loaded with Ag nanoparticles, and the corresponding composite materials exhibited high catalytic activities for the reduction of 4‐nitrophenol.  相似文献   

18.
The disassembly and reassembly of giant molecules are essential processes in controlling the structure and function of biological and artificial systems. In this work, the disassembly and reassembly of a giant ring‐shaped polyoxometalate (POM) without isomerization of the monomeric units is reported. The reaction of a hexavacant lacunary POM that is soluble in organic solvents, [P2W12O48]14?, with manganese cations gave the giant ring‐shaped POM [{γ‐P2W12O48Mn4(C5H7O2)2(CH3CO2)}6]42?. This POM is a hexamer of manganese‐substituted {P2W12O48Mn4} units, and its inner cavity was larger than any of those previously reported for ring‐shaped polyoxotungstates. It was disassembled into monomeric units in acetonitrile, and the removal of the capping organic ligands on the manganese cations led to reassembly into a tetrameric ring‐shaped POM, [{γ‐P2W12O48Mn4(H2O)6}4(H2O)4]24?.  相似文献   

19.
Herein, we present an electrochemically assisted method for the reduction of graphene oxide (GO) and the assembly of polyoxometalate clusters on the reduced GO (rGO) nanosheets for the preparation of nanocomposites. In this method, the Keggin‐type H4SiW12O40 (SiW12) is used as an electrocatalyst. During the reduction process, SiW12 transfers the electrons from the electrode to GO, leading to a deep reduction of GO in which the content of oxygen‐containing groups is decreased to around 5 %. Meanwhile, the strong adsorption effect between the SiW12 clusters and rGO nanosheets induces the spontaneous assembly of SiW12 on rGO in a uniformly dispersed state, forming a porous, powder‐type nanocomposite. More importantly, the nanocomposite shows an enhanced capacity of 275 mAh g?1 as a cathode active material for lithium storage, which is 1.7 times that of the pure SiW12. This enhancement is attributed to the synergistic effect of the conductive rGO support and the well‐dispersed state of the SiW12 clusters, which facilitate the electron transfer and lithium‐ion diffusion, respectively. Considering the facile, mild, and environmentally benign features of this method, it is reasonable as a general route for the incorporation of more types of functional polyoxometalates onto graphene matrices; this may allow the creation of nanocomposites for versatile applications, for example, in the fields of catalysis, electronics, and energy storage.  相似文献   

20.
A bimolecular rate constant,kDHO, of (29 ± 9) × 10?12 cm3 molecule?1 s?1 was measured using the relative rate technique for the reaction of the hydroxyl radical (OH) with 3,5‐dimethyl‐1‐hexyn‐3‐ol (DHO, HC?CC(OH)(CH3)CH2CH(CH3)2) at (297 ± 3) K and 1 atm total pressure. To more clearly define DHO's indoor environment degradation mechanism, the products of the DHO + OH reaction were also investigated. The positively identified DHO/OH reaction products were acetone ((CH3)2C?O), 3‐butyne‐2‐one (3B2O, HC?CC(?O)(CH3)), 2‐methyl‐propanal (2MP, H(O?)CCH(CH3)2), 4‐methyl‐2‐pentanone (MIBK, CH3C(?O)CH2CH(CH3)2), ethanedial (GLY, HC(?O)C(?O)H), 2‐oxopropanal (MGLY, CH3C(?O)C(?O)H), and 2,3‐butanedione (23BD, CH3C(?O)C(?O)CH3). The yields of 3B2O and MIBK from the DHO/OH reaction were (8.4 ± 0.3) and (26 ± 2)%, respectively. The use of derivatizing agents O‐(2,3,4,5,6‐pentalfluorobenzyl)hydroxylamine (PFBHA) and N,O‐bis(trimethylsilyl)trifluoroacetamide (BSTFA) clearly indicated that several other reaction products were formed. The elucidation of these other reaction products was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible DHO/OH reaction mechanisms based on previously published volatile organic compound/OH gas‐phase reaction mechanisms. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 534–544, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号