首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Conyza blinii Le'vl is a medicinal herb used for the treatment of inflammation in Chinese folk medicine. Its major bioactive constituents are triterpene saponins, most of which contain 6–8 sugar residues. In this report, electrospray ionization tandem mass spectrometry fragmentation behaviors of bisdesmosidic triterpene saponins (conyzasaponin A, B, and C) were studied in both positive and negative ion modes with an ion‐trap mass spectrometer. In full scan mass spectrometry, these saponins gave predominant [M–H]? and [M+Na]+ ions, which determined the molecular weights. In tandem mass spectrometry (MSn, n = 2–4), the [M–H]? and [M+Na]+ ions yielded fragments [Y–H]? and [Bα+Na]+, which were diagnostic for the structures of the triterpene skeleton and sugar chains. The structural elucidation was approved by accurate mass data using IT‐TOF‐MS. An interpretation guideline based on MSn (n = 2–4) diagnostic ions was proposed in order to elucidate the chemical structures of unknown triterpene saponins in C. blinii extract. The saponins in C. blinii were separated by liquid chromatography with a methanol/acetonitrile/water solvent system, and then analyzed by ion‐trap and IT‐TOF mass spectrometers. Based on the interpretation guideline, a total of 35 triterpenoid saponins were tentatively identified. Among them, 15 saponins had been previously reported, and the other 20 saponins were reported from Conyza species for the first time. This study indicates that LC/MS is a powerful technology for the rapid characterization of complicated saponins in herbal extracts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
High-resolution mass spectrometry (HRMS), hybrid tandem mass spectrometry (MS/MS) (EBqQ), and photoelectron-photoion coincidence (PEPICO) experiments were conducted to examine a possible ortho-ortho effect resulting in a novel [M - 35]+ fragment ion in 2-alkyl-4, 6-dinitrophenols. For compounds having ethyl or larger alkyl substituents, [M35]+ was observed only when [M - 18]+ ions were present, with the ortho nitro group being involved in the reaction to [M- 35]+. For [M - 18]+ and [M - 35]+, HRMS results were consistent with losses of H2O and H2O + OH, respectively, whereas MS/MS results indicated a sequential reaction due to metastable dissociations. The appearance energy determined by PEPICO for [M - 35]+ was found to be greater than the appearance energy for [M - 18]+, thus supporting a sequential reaction. 69–75).  相似文献   

3.
In this work, the mass spectrometry behaviour of the veterinary drug family of phenicols, including chloramphenicol (CAP) and its related compounds thiamphenicol (TAP), florfenicol (FF) and FF amine (FFA), was studied. Several atmospheric pressure ionization sources, electrospray (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization were compared. In all atmospheric pressure ionization sources, CAP, TAP and FF were ionized in both positive and negative modes; while for the metabolite FFA, only positive ionization was possible. In general, in positive mode, [M + H]+ dominated the mass spectrum for FFA, while the other compounds, CAP, TAP and FF, with lower proton affinity showed intense adducts with species present in the mobile phase. In negative mode, ESI and atmospheric pressure photoionization showed the deprotonated molecule [M–H]?, while atmospheric pressure chemical ionization provided the radical molecular ion by electron capture. All these ions were characterized by tandem mass spectrometry using the combined information obtained by multistage mass spectrometry and high‐resolution mass spectrometry in a quadrupole‐Orbitrap instrument. In general, the fragmentation occurred via cyclization and losses or fragmentation of the N‐(alkyl)acetamide group, and common fragmentation pathways were established for this family of compounds. A new chemical structure for the product ion at m/z 257 for CAP, on the basis of the MS3 and MS4 spectra is proposed. Thermally assisted ESI and selected reaction monitoring are proposed for the determination of these compounds by ultra high‐performance liquid chromatography coupled to tandem mass spectrometry, achieving instrumental detection limits down to 0.1 pg. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A series of α‐acyloxyhydroperoxy aldehydes was analyzed with direct infusion electrospray ionization tandem mass spectrometry (ESI/MSn) as well as liquid chromatography coupled with the mass spectrometry (LC/MS). Standards of α‐acyloxyhydroperoxy aldehydes were prepared by liquid‐phase ozonolysis of cyclohexene in the presence of carboxylic acids. Stabilized Criegee intermediate (SCI), a by‐product of the ozone attack on the cyclohexene double bond, reacted with the selected carboxylic acids (SCI scavengers) leading to the formation of α‐acyloxyhydroperoxy aldehydes. Ionization conditions were optimized. [M + H]+ ions were not formed in ESI; consequently, α‐acyloxyhydroperoxy aldehydes were identified as their ammonia adducts for the first time. On the other hand, atmospheric‐pressure chemical ionization has led to decomposition of the compounds of interest. Analysis of the mass spectra (MS2 and MS3) of the [M + NH4]+ ions allowed recognizing the fragmentation pathways, common for all of the compounds under study. In order to get detailed insights into the fragmentation mechanism, a number of isotopically labeled analogs were also studied. To confirm that the fragmentation mechanism allows predicting the mass spectrum of different α‐acyloxyhydroperoxy aldehydes, ozonolysis of α‐pinene, a very important secondary organic aerosol precursor, was carried out. Spectra of the two ammonium cationized α‐acyloxyhydroperoxy aldehydes prepared with α‐pinene, cis‐pinonic acid as well as pinic acid were predicted very accurately. Possible applications of the method developed for the analysis of α‐acyloxyhydroperoxy aldehydes in SOA samples, as well as other compounds containing hydroperoxide moiety are discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In the search for novel natural products in plants, particularly those with potential bioactivity, it is important to efficiently distinguish novel compounds from previously isolated, known compounds, a process known as dereplication. In this study, electrospray ionization‐multiple stage tandem mass spectrometry (ESI‐MSn) was used to study the behaviour of 12 pregnane glycosides and genins previously isolated from Marsdenia tenacissima, a traditional Chinese medicinal plant, as a basis for dereplication of compounds in a plant extract. In addition to [M + Na]+ and [M + NH4]+ ions, a characteristic [M‐glycosyl + H]+ ion was observed in full‐scan mode with in‐source fragmentation. Sequential in‐trap collision‐induced dissociation of [M + Na]+ ions from 11,12‐diesters revealed consistent preferred losses of substituents first from C‐12, then from C‐11, followed by losses of monosaccharide fragments from the C‐3 tri‐ and tetrasaccharide substituents. A crude methanol extract of M. tenacissima stems was analysed using high‐performance liquid chromatography coupled to ESI‐MS. Several previously isolated pregnane glycosides were dereplicated, and the presence of an additional nine novel pregnane glycosides is predicted on the basis of the primary and fragment ions observed, including two with a previously unreported C4H7O C‐11/C‐12 substituent of pregnane glycosides. This study is the first report of prediction of the structures of novel pregnane glycosides in a crude plant extract by a combination of in‐source fragmentation and in‐trap collision‐induced dissociation and supports the usefulness of LC‐ESI‐MSn not only for dereplication of active compounds in extracts of medicinal plants but also for detecting the presence of novel related compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The detection of anabolic androgenic steroids (AAS) is one of the most important topics in doping control analysis. Gas chromatography coupled to (tandem) mass spectrometry (GC–MS(/MS)) with electron ionization and liquid chromatography coupled to tandem mass spectrometry have been traditionally applied for this purpose. However, both approaches still have important limitations, and, therefore, detection of all AAS is currently afforded by the combination of these strategies. Alternative ionization techniques can minimize these drawbacks and help in the implementation of a single method for the detection of AAS. In the present work, a new atmospheric pressure chemical ionization (APCI) source commercialized for gas chromatography coupled to a quadrupole time‐of‐flight analyzer has been tested to evaluate the ionization of 60 model AAS. Underivatized and trimethylsylil (TMS)‐derivatized compounds have been investigated. The use of GC–APCI–MS allowed for the ionization of all AAS assayed irrespective of their structure. The presence of water in the source as modifier promoted the formation of protonated molecules ([M+H]+), becoming the base peak of the spectrum for the majority of studied compounds. Under these conditions, [M+H]+, [M+H‐H2O]+ and [M+H‐2·H2O]+ for underivatized AAS and [M+H]+, [M+H‐TMSOH]+ and [M+H‐2·TMSOH]+ for TMS‐derivatized AAS were observed as main ions in the spectra. The formed ions preserve the intact steroid skeleton, and, therefore, they might be used as specific precursors in MS/MS‐based methods. Additionally, a relationship between the relative abundance of these ions and the AAS structure has been established. This relationship might be useful in the structural elucidation of unknown metabolites. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The electrospray ionization (ESI) mass spectrometric behavior of five Stemona alkaloids, stemokerrin, oxystemokerrin, oxystemokerrilactone, oxystemokerrin N‐oxide and stemokerrin N‐oxide, was studied using an ESI tandem mass technique (MSn). These compounds, isolated from Stemona saxorum endemic in Vietnam, represent a class of alkaloids containing a pyrido[1,2‐a]azepine A,B‐ring core with a 1‐hydroxypropyl side chain attached to C‐4. Their fragmentation pathways were elucidated by ESI‐MSn results and the elemental composition of the major product ions was confirmed by accurate mass measurement. In order to rationalize some fragmentation pathways, the relative Gibbs free energies of some product ions were estimated using the B3LYP/6‐31+G(d) method. Based on the ESI‐MSn results of five reference compounds, a reversed‐phase high‐performance liquid chromatography with tandem mass spectrometry (RP‐HPLC/MSn) method was developed for the characterization of Stemona alkaloids with a pyrido[1,2‐a]azepine A,B‐ring core from the extract of S. saxorum. A total of 41 components were rapidly identified or tentatively characterized, of which 12 compounds were identified as Stemona alkaloids with a pyrido[1,2‐a]azepine A,B‐ring core, including four new compounds. This method is convenient and sensitive, especially for minor components in complex natural product extracts. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS) were applied to characterize drug metabolites. Although these two methods have overcome the identification and structural characterization of metabolites analysis, they remain time‐consuming processes. In this study, a novel multiple‐stage tandem mass spectrometric method (MSn) was evaluated for identification and characterization of new minor metabolism profiling of penicillin G, one of the β‐lactam antibiotics, in human serum. Seven minor metabolites including five phase I metabolites and two phase II metabolites of penicillin G were identified by using data‐dependent LC/MSn screening in one chromatographic run. The accuracy masses of seven identified metabolites of penicillin G were also confirmed by mass spectral calibration software (MassWorks?). The proposed data‐dependent LC/MSn method is a powerful tool to provide large amounts of the necessary structural information to characterize minor metabolite in metabolism profiling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Cinnamylideneacetophenones have been extensively used as versatile starting materials in numerous different transformations. The structural characterization of this type of compounds is, therefore, of crucial importance since it can give information on the chemistry, reactivity and also the potential biological activity of this type of compounds. Thus, 24 derivatives were systematically studied by tandem mass spectrometry (MS2) with electrospray ionization (ESI), in positive ion mode. The protonated molecules, [M + H]+, formed under ESI conditions were induced to dissociate and the fragmentation patterns were studied. The information collected provided important structural information on the type of substituents present and constitute an important database concerning this family of compounds. Overall, it was found that the substitution pattern of the cinnamylideneacetophenone derivatives changes the ESI‐MS2 fragmentation considerably. These results indicate that ESI‐MS2 is a useful technique for distinguishing positional isomers of these cinnamylideneacetophenone derivatives. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Tomato (Lycopersicon esculentum Mill.) is the second most important fruit crop worldwide. Tomatoes are a key component in the Mediterranean diet, which is strongly associated with a reduced risk of chronic degenerative diseases. In this work, we use a combination of mass spectrometry (MS) techniques with negative ion detection, liquid chromatography/electrospray ionization linear ion trap quadrupole‐Orbitrap‐mass spectrometry (LC/ESI‐LTQ‐Orbitrap‐MS) and liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS) on a triple quadrupole, for the identification of the constituents of tomato samples. First, we tested for the presence of polyphenolic compounds through generic MS/MS experiments such as neutral loss and precursor ion scans on the triple quadrupole system. Confirmation of the compounds previously identified was accomplished by injection into the high‐resolution system (LTQ‐Orbitrap) using accurate mass measurements in MS, MS2 and MS3 modes. In this way, 38 compounds were identified in tomato samples with very good mass accuracy (<2 mDa), three of them, as far as we know, not previously reported in tomato samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Salvia divinorum is widely cultivated in the US, Mexico, Central and South America and Europe and is consumed for its ability to produce hallucinogenic effects similar to those of other scheduled hallucinogenic drugs, such as LSD. Salvinorin A (SA), a kappa opiod receptor agonist and psychoactive constituent, is found primarily in the leaves and to a lesser extent in the stems of the plant. Herein, the analysis of intact S. divinorum leaves for SA and of acetone extracts separated using thin layer chromatography (TLC) is demonstrated using desorption electrospray ionization (DESI) mass spectrometry. The detection of SA using DESI in the positive ion mode is characterized by several ions associated with the compound – [M+H]+, [M+NH4]+, [M+Na]+, [2M+NH4]+, and [2M+Na]+. Confirmation of the identity of these ions is provided through exact mass measurements using a time‐of‐flight (ToF) mass spectrometer. The presence of SA in the leaves was confirmed by multi‐stage tandem mass spectrometry (MSn) of the [M+H]+ ion using a linear ion trap mass spectrometer. Direct analysis of the leaves revealed several species of salvinorin in addition to SA as confirmed by MSn, including salvinorin B, C, D/E, and divinatorin B. Further, the results from DESI imaging of a TLC separation of a commercial leaf extract and an acetone extract of S. divinorum leaves were in concordance with the TLC/DESI‐MS results of an authentic salvinorin A standard. The present study provides an example of both the direct analysis of intact plant materials for screening illicit substances and the coupling of TLC and DESI‐MS as a simple method for the examination of natural products. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The application of electrospray ionization (ESI) ion trap mass spectrometry in the characterization of O-glucuronide conjugates of some drugs in urine is described. The conjugated metabolites formed in rabbit and human were separated by reversed-phase high-performance liquid chromatography (HPLC) and characterized by multi-stage mass spectrometry (MSn) experiments in negative ion mode. The ESI mass spectra showed a deprotonated molecule [M–H], which was chosen as precursor ion. Collision-induced dissociation (CID) of [M–H] in MSn experiments resulted in the appearance of glucuronate ‘fingerprint’ ions at m/z 175 and 113 as well as prominent aglycone ions which were the same as those produced from authentic specimens. This information can be used to identify this type of compound directly without the need for derivatization or hydrolysis of enzymes, providing a rapid and specific method for guiding the isolation and characterization of similar compounds in complex matrices with LC/MS.  相似文献   

13.
Autoxidation of flavan‐3‐ols was carried out in aqueous/methanol model solutions under mildly acidic conditions (pH 6.0), and these autoxidation products were analyzed by using high performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (MS/MS). The results showed that (+)‐catechins and (?)‐epicatechins generated autoxidation reaction with each other to form a series of oligomers that had the same [M ? H]? molecular ions (MS1) as those of natural procyanidins, but had completely different fragment ions (MS2). According to MS/MS analysis, the major fragments of these oligomers were derived not only from the retro‐Diels–Alder (RDA) dissociations on the C‐rings of the flavan‐3‐ol units, but also from the quinone‐methide (QM) cleavage of the interflavan linkages (IFL), and thus they were identified as B‐type dehydrodicatechins, B‐type dehydrotricatechins and A‐type dehydrotricatechins, respectively. The potential structures of their [M ? H]? molecular ions and partial fragment ions were deduced on the basis of the MS/MS characterization and the oxidation of flavan‐3‐ols in previous reports. Some specific fragment ions were found to be very useful for identifying the autoxidation oligomers (the B‐type dehydrodicatechins at m/z 393, the B‐type dehydrotricatechins at m/z 681 and the A‐type dehydrotricatechins at m/z 725). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The fragmentation pathways of deprotonated cyclic dipeptides have been studied by electrospray ionization multi‐stage mass spectrometry (ESI‐MSn) in negative mode. The results showed that the fragmentation pathways of deprotonated cyclic dipeptides depended significantly on the different substituents, the side chains of amino acid residues at the diketopiperazine ring. In the spectra of deprotonated cyclic dipeptides, the ion [M? H? substituent radical]? was firstly observed in the ESI mode. The characteristic fragment ions [M? H? substituent radical]? and [M? H? (substituent? H)]? could be used as the symbols of particular cyclic dipeptides. The hydrogen/deuterium (H/D) exchange experiment, the high‐resolution mass spectrometry (Q‐TOF) and theoretical calculations were used to rationalize the proposed fragmentation pathways and to verify the differences between the fragmentation pathways. The relative Gibbs free energies (ΔG) of the product ions and possible fragmentation pathways were estimated using the B3LYP/6–31++G(d, p) model. The results have some potential applications in the structural elucidation and interpretation of the mass spectra of homologous compounds and will enrich the gas‐phase ESI‐MS ion chemistry of cyclic dipeptides. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
应用高效液相色谱质谱联用方法(HPLC-ESI-MSn)研究了甘草提取物中的七种化合物,四种三萜类化合物和三种黄酮类化合物。通过多极串联质谱(ESI-MSn)和多极串联傅里叶变换回旋共振质谱(FT-ICR-MSn)法研究了它们的碎裂规律。通过比较保留时间和质谱数据对上述七种化合物进行了归属,并阐述了其可能的质谱裂解途径。以上结果显示ESI-MSn和FT-ICR-MSn是非常有效的分析三萜类化合物和黄酮类化合物结构的工具。  相似文献   

16.
Five well‐known active naphtodianthrone constituents of Hypericum perforatum (St John's Wort) extracts have been investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI‐FTICRMS) and ESI‐FTICRMSn. The studied compounds were hypericin, pseudohypericin, protohypericin, protopseudohypericin (biosynthetic precursors of the two former compounds, respectively) and isopseudohypericin (alkaline degradation product of pseudohypericin). Dissociation mass spectrometry measurements performed on the [M–H]? ion presented a variable efficiency as a function of the used activation mode. Sustained off‐resonance irradiation collision‐induced dissociation (SORI–CID) only led to a restricted number of fragment ions. In contrast, IRMPD ensured the detection of numerous product ions. Ions detected in ESI‐FTICRMS and ESI‐FTICRMSn experiments were measured with a very high mass accuracy (typically mass error is lower than 0.5 mDa at m/z close to 500) that allowed unambiguous formulae to be assigned to each signal observed in a mass spectrum. In spite of similar structures, specific fragmentation patterns were observed for the different compounds investigated. This study may be useful in the future to characterize in natural extracts these compounds (or derivatives of these compounds) by liquid chromatography/tandem mass spectrometry (LC/MS/MS) experiments by considering the MS/MS transitions highlighted in this paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
We have identified compounds obtained from the SARA fractions of bitumen by using atmospheric pressure photoionization mass spectrometry and low‐energy collision tandem mass spectrometric analyses with a QqToF‐MS/MS hybrid instrument. The identified compounds were isolated from the maltene saturated oil and the aromatic fractions of the SARA components of a bitumen. The QqToF instrument had sufficient mass resolution to provide accurate molecular weight information and to enhance the tandem mass spectrometry results. The APPI‐QqToF‐MS analysis of the separated compounds showed a series of protonated molecules [M + H]+ and molecular ions [M]+? of the same mass but having different chemical structures, in the maltene saturated oil and the aromatic SARA fractions. These isobaric ions were a molecular ion [M2]+? at m/z 418.2787 and a protonated molecule [M5 + H]+ at m/z 287.1625 in the saturated oil fraction, and molecular ions [M6]+? at m/z 418.1584 and [M7]+? at m/z 287.1285 in the aromatic fraction. The identification of this series of chemical compounds was achieved by performing CID‐MS/MS analyses of the molecular ions [M]+? ([M1]+? at m/z 446. 2980, [M2]+? at m/z 418.2787, [M3]+? at m/z 360.3350 and [M4]+? at m/z 346.2095) in the saturated oil fraction and of the [M5 + H]+ ion at m/z 287.1625 also in the saturated oil fraction. The observed CID‐MS/MS fragmentation differences were explained by proposed different breakdown processes of the precursor ions. The presented tandem mass spectrometric study shows the capability of MS/MS experiments to differentiate between different classes of chemical compounds of the SARA components of bitumen and to explain the reasons for the observed mass spectrometric differences. However, greater mass resolution than that provided by the QqToF‐MS/MS instrument would be required for the analysis of the asphaltene fraction of bitumen. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
N‐(3‐Ferrocenyl‐2‐naphthoyl) dipeptide ethyl esters 1–4 and N‐(6‐ferrocenyl‐2‐naphthoyl) dipeptide ethyl esters 5–8 were prepared by coupling either 3‐ferrocenylnaphthalene‐2‐carboxylic acid or 6‐ferrocenylnaphthalene‐2‐carboxylic acid to the dipeptide ethyl esters GlyGly(OEt) (1, 5), AlaGly(OEt) (2, 6), GlyPhe(OEt) (3, 7) and GlyLeu(OEt) (4, 8), using the standard N‐(3‐dimethylaminopropyl)‐N'‐ethylcarbodiimide hydrochloride, 1‐hydroxybenzotriazole protocol. Electrospray ionization mass spectrometry (ESI‐MS) and laser desorption ionization mass spectrometry (LDI‐MS) were employed in conjunction with tandem mass spectrometry in the analysis of N‐(3‐ferrocenyl‐2‐naphthoyl) dipeptide ethyl esters 1–4 and N‐(6‐ferrocenyl‐2‐naphthoyl) dipeptide ethyl esters 5–8. Radical cations, [M]+? and [M + H]+ species were both observed in the mass spectra. Intense sodium [M + Na]+ and potassium [M + K]+ adducts were also present. An important diagnostic ion at m/z [M–65]+ was observed in both the MS and MS/MS spectra of the N‐(3‐ferrocenyl‐2‐naphthoyl) dipeptide derivatives. Sequence‐specific ions were generally not observed in the MS/MS spectra of the N‐(3‐ferrocenyl‐2‐naphthoyl) series due to formation of the diagnostic [M–65]+ ion. Sequence‐specific ions were observed in the MS/MS spectra of the N‐(6‐ferrocenyl‐2‐naphthoyl) dipeptide esters with charge retention on the derivatized N‐terminal of the dipeptide. Both series of compounds could be successfully analyzed by MALDI without the use of a matrix (LDI). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Negative corona discharge atmospheric pressure chemical ionization (APCI) was used to investigate phenols with varying numbers of tert‐butyl groups using ion mobility spectrometry–mass spectrometry (IMS‐MS). The main characteristic ion observed for all the phenolic compounds was the deprotonated molecule [M–H]. 2‐tert‐Butylphenol showed one main mobility peak in the mass‐selected mobility spectrum of the [M–H] ion measured under nitrogen atmosphere. When air was used as a nebulizer gas an oxygen addition ion was seen in the mass spectrum and, interestingly, this new species [M–H+O] had a shorter drift time than the lighter [M–H] ion. Other phenolic compounds primarily produced two IMS peaks in the mass‐selected mobility spectra measured using the [M–H] ion. It was also observed that two isomeric compounds, 2,4‐di‐tert‐butylphenol and 2,6‐di‐tert‐butylphenol, could be separated with IMS. In addition, mobilities of various characteristic ions of 2,4,6‐trinitrotoluene were measured, since this compound was previously used as a mobility standard. The possibility of using phenolic compounds as mobility standards is also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Diaminodithiol (N2S2)‐type compounds readily oxidize to produce disulfides. We found that some ligands failed to produce a prospective protonated molecular ion peak but gave a peak of [M–2+H]+, whereas others produced both [M+H]+ and [M–2+H]+ peaks in electrospray ionization mass spectra. In this study, an important N2S2 ligand, the ethyl cysteinate dimer (ECD), was investigated with high‐resolution accurate mass measurements and tandem mass spectrometric analysis. The elemental compositions of ECD and its oxidized product were analyzed. The oxidation of ECD was confirmed. An ultra‐performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method in multiple reaction monitoring mode was developed, and ECD and its oxidized product were quantitated in solution. The dynamic oxidation process of ECD in solution was studied in detail. The full time course of the decrease in ECD and the increase in its oxide was observed; the oxidation procedure followed first‐order kinetics, and the half‐life time of ECD was 51 min. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号