首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IntroductionOrderedfilmsofwater insolublesurfactantscanbepreparedbycastingtheirsolutionsordispersionsontoasolidsupport .1Evaporationofthesolventaftercastingleavesthinfilmself assembledintoorderedstackofbi layer ,whichissimilartobiologicalmembraneformedby…  相似文献   

2.
A matrix comprising iridium nanoparticles and 1‐butyl‐3‐methylimidazolium tetrafluoroborate ionic liquid (Ir‐BMI.BF4) supported in montmorillonite (MMT) was obtained through an efficient incorporation process. This modified clay matrix (Ir‐BMI.BF4‐MMT) was used for the immobilization of the enzymes laccase (LAC) and polyphenol oxidase (PPO) and employed in the construction of a bi‐enzymatic biosensor for determination of rutin by square‐wave voltammetry. Under optimized conditions, the analytical curve showed a linear range for rutin concentrations from 9.17×10?8 to 3.10×10?6 mol L?1 with a detection limit of 3.09×10?8 mol L?1. The method was successfully applied to the determination of rutin content in pharmaceutical samples.  相似文献   

3.
The article describes the use of a fullerene (C60)‐β‐cyclodextrin conjugate, synthesized via 1,3dipolar cycloaddition, for the ultrasensitive electrochemical detection of p‐nitrophenol. This conjugate was successfully immobilized on the surface of a glassy carbon electrode and the developed device showed high activity towards p‐nitrophenol due to the synergetic effect of C60, the latter becoming highly conductive upon reduction. The determination of p‐nitrophenol was performed by using square wave voltammetry over a concentration range from 2.8×10?9 mol L?1 to 4.2×10?7 mol L?1 and the detection limit was calculated to be 1.2×10?9 mol L?1.  相似文献   

4.
《Analytical letters》2012,45(5):895-907
Abstract

An amperometric biosensor for the determination of phenols is proposed using a crude extract of sweet potato (Ipomoea batatas (L.) Lam.) as an enzymatic source of polyphenol oxidase (PPO; tyrosinase; catechol oxidase; EC 1.14.18.1). The biosensor is constructed by the immobilization of sweet potato crude extract with glutaraldehyde and bovine serum albumin onto an oxygen membrane. This biosensor provides a linear response for catechol, pyrogallol, phenol and p-cresol in the concentration ranges of 2.0×10?5-4.3×10?4mol L?1, 2.0×10?5-4.3×10?4 mol L?1, 2.0×10?5-4.5×10?4 mol L?1 and 2.0×10?5-4.5×10?4mol L?1, respectively. The response time was about 3–5 min for the useful response range, and the lifetime of this electrode was excellent for fifteen days (over 220 determinations for each enzymatic membrane). Application of this biosensor for the determination of phenols in industrial wastewaters is presented.  相似文献   

5.
A novel hydrogen peroxide (H2O2) sensor was fabricated by using a submonolayer of 3‐mercaptopropionic acid (3‐MPA) adsorbed on a polycrystalline gold electrode further reacted with poly(amidoamine) (PAMAM) dendrimer (generation 4.0) to obtain a film on which Prussian Blue (PB) was later coordinated to afford a mixed and stable electrocatalytic layer for H2O2 reduction. On the basis of the electrochemical behaviors, atomic force microscopy (AFM) and X‐ray photoelectron spectra (XPS), it is suggested that the PB molecules are located within the dendritic structure of the surface attached PAMAM dendrimers. It was found that the PB/PAMAM/3‐MPA/Au modified electrode showed an excellent electrocatalytic activity for H2O2 reduction. The effects of applied potential and pH of solution upon the response of the modified electrode were investigated for an optimum analytical performance. Even in the presence of dissolved oxygen, the sensor exhibited highly sensitive and rapid response to H2O2. The steady‐state cathodic current responses of the modified electrode obtained at ?0.20 V (vs. SCE) in air‐saturated 0.1 mol L?1 phosphate buffer solution (PBS, pH 6.50) showed a linear relationship to H2O2 concentration ranging from 1.2×10?6 mol L?1 to 6.5×10?4 mol L?1 with a detection limit of 3.1×10?7 mol L?1. Performance of the electrode was evaluated with respected to possible interferences such as ascorbic acid and uric acid etc. The selectivity, stability, and reproducibility of the modified electrode were satisfactory.  相似文献   

6.
In this paper, gold microelectrode array (Au‐MEA) were employed to determination of ethambutol in aqueous medium. Au‐MEA was constructed with an electronic microchip integrated circuit. The standard curve (analytical curve) was constructed for a single microelectrode (ME) in a concentration range of 5.0×10?5 to 2.0×10?3 mol L?1, allowing estimation of both the limit of detection (LOD) (4.73×10?5 mol L?1) and the limit of quantification (LOQ) (1.57×10?4 mol L?1) for ethambutol. When the MEA was utilized, the LOD and LOQ were 1.55×10?7 and 5.18×10?7 mol L?1, respectively. Our results indicated that Au‐MEA can be utilized as amperometric sensors for ethambutol determination in aqueous media.  相似文献   

7.
The present work describes the development of a nanocomposite system and its application in construction of a new amperometric biosensor applied in the determination of total polyphenolic content from propolis extracts. The nanocomposite system was based on covalent immobilization of laccase on functionalized indium tin oxide nanoparticles and it was morphologically and structural characterized. The casting of the developed nanocomposite system on the surface of a screen-printed electrode was used for biosensor fabrication. The analytical performance characteristics of the settled biosensor were determined for rosmarinic acid, caffeic acid and catechol (as laccase specific substrate). The linearity was obtained in the range of 1.06×10?6 ? 1.50×10?5 mol L?1 for rosmarinic acid, 1.90×10?7 ? 2.80×10?6 mol L?1 for caffeic acid and 1.66×10?6 ? 7.00×10?6 mol L?1 for catechol. A good sensitivity of amperometric biosensor 141.15 nA µmol?1 L?1 and fair detection limit 7.08×10?8 mol L?1 were obtained for caffeic acid. The results obtained for polyphenolic content of propolis extracts were compared with the chromatographic data obtained by liquid-chromatography with diode array detection.   相似文献   

8.
The highly efficient H2O2 biosensor was fabricated on the basis of the complex films of hemoglobin (Hb), nano ZnO, chitosan (CHIT) dispersed solution and nano Au immobilized on glassy carbon electrode (GCE). Biocompatible ZnO‐CHIT composition provided a suitable microenvironment to keep Hb bioactivity (Michaelis‐Menten constant of 0.075 mmol L?1). The presence of nano Au in matrix could effectively enhance electron transfer between Hb and electrode. The electrochemical behaviors and effects of solution pH values were carefully examined in this paper. The (ZnO‐CHIT)‐Au‐Hb/GCE demonstrated excellently electrocatalytical ability for H2O2. This biosensor had a fast response to H2O2 less than 4 s and excellent linear relationships were obtained in the concentration range from1.94×10?7 to 1.73×10?3 mol L?1 with the detection limit of 9.7×10?8 mol L?1 (S/N=3) under the optimum conditions. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

9.
A bienzyme biosensor for the simultaneous determination of glucose and fructose was developed by coimmobilising glucose oxidase (GOD), fructose dehydrogenase (FDH), and the mediator, tetrathiafulvalene (TTF), by cross-linking with glutaraldehyde atop a 3-mercaptopropionic acid (MPA) self-assembled monolayer (SAM) on a gold disk electrode (AuE). The performance of this bienzyme electrode under batch and flow injection (FI) conditions, as well as an amperometric detection in high-performance liquid chromatography (HPLC), are reported. The order of enzyme immobilisation atop the MPA-SAM affected the biosensor amperometric response in terms of sensitivity, with the immobilisation order GOD, FDH, TTF being selected. Similar analytical characteristics to those obtained with single GOD or FDH SAM-based biosensors for glucose and fructose were achieved with the bienzyme electrode, indicating that no noticeable changes in the biosensor responses to the analytes occurred as a consequence of the coimmobilisation of both enzymes on the same MPA-AuE. The suitability of the bienzyme biosensor for the analysis of real samples under flow injection conditions was tested by determining glucose in two certified serum samples. The simultaneous determination of glucose and fructose in the same sample cannot be performed without a separation step because at the detection potential used (+0.10 V), both sugars show amperometric response. Consequently, HPLC with amperometric detection at the TTF-FDH-GOD-MPA-AuE was accomplished. Glucose and fructose were simultaneously determined in honey, cola softdrink, and commercial apple juice, and the results were compared with those obtained by using other reference methods.  相似文献   

10.
《Analytical letters》2012,45(7-8):1089-1099
A laccase-based biosensor was developed by specific enzyme adsorption on screen-printed working electrodes of DROPSENS cells, and stabilized with Nafion 0.1% membrane. The electrode was characterized with respect to response time, sensitivity, linear range, detection limit, pH dependence, interferences, and long-term stability. The tested substrates were catechol, rosmarinic acid, caffeic acid, chlorogenic acid, and gallic acid. The optimized biosensor proved the following characteristic performances: the apparent Michaelis Menten calculated considering rosmarinic acid substrate 8.3 × 10?6 mol L?1 (r = 0.995, n = 6); the dynamic range of biosensor response for rosmarinic acid 7 × 10?7 ? 1.5 × 10?6 mol L?1; the detection limit for rosmarinic acid 1.19 × 10?7 mol L?1 (RSD = 1.08%, n = 3). It was noticed that the biosensor reaches systematically 90% to 94.3% from the response obtained by LC-DAD-ESI-MS for real samples.  相似文献   

11.
A water‐insoluble picket‐fence porphyrin was first assembled on nitrogen‐doped multiwalled carbon nanotubes (CNx MWNTs) through Fe? N coordination for highly efficient catalysis and biosensing. Scanning electron micrographs, Raman spectra, X‐ray photoelectron spectra, UV/Vis absorption spectra, and electrochemical impedance spectra were employed to characterize this novel nanocomposite. By using electrochemical methods on the porphyrin at low potential in neutral aqueous solution, the presence of CNx MWNTs led to the direct formation of a high‐valent iron(IV)–porphyrin unit, which produced excellent catalytic activity toward the oxidation of sulfite ions. By using sulfite ions, a widely used versatile additive and preservative in the food and beverage industries, as a model, a highly sensitive amperometric biosensor was proposed. The biosensor showed a linear range of four orders of magnitude from 8.0×10?7 to 4.9×10?3 mol L?1 and a detection limit of 3.5×10?7 mol L?1 due to the highly efficient catalysis of the nanocomposite. The designed platform and method had good analytical performance and could be successfully applied in the determination of sulfite ions in beverages. The direct noncovalent assembly of porphyrin on CNx MWNTs provided a facile way to design novel biofunctional materials for biosensing and photovoltaic devices.  相似文献   

12.
The sol-gel derived glucose biosensor was developed, and the sol-gel membrane was organically modified by N-(3-triethoxysilylpropyl)-ferrocenylmethylamine (FcSi) as sol-gel precursor to make electrochemical biosensor. The structure of biosensor was sol-gel/FcSi+GOx/GC type (glucose oxidase, GOx). The ferrocene mediator was chemically immobilized to the silane network, and GOx was entrapped to the sol-gel glass network. Therefore, these structures prevented mediator leakage and retained the enzyme activity. Additionally, pH of electrolyte, temperature effects, and interference of positive substances with biosensor were investigated. And the electrochemical performance of biosensor was studied by amperometry. The results indicated that the linear range, detection limit. and response slope of biosensor was 2.00×10^-4-1.57×10^-3 mol·L^-1, 2.0×10^-4 mol·L^-1 and 5.06×10^5 nA·mol^- 1·L, respectively.  相似文献   

13.
The voltammetric behavior of 3‐nitrofluoranthene and 3‐aminofluoranthene was investigated in mixed methanol‐water solutions by differential pulse voltammetry (DPV) at boron doped diamond thin‐film electrode (BDDE). Optimum conditions have been found for determination of 3‐nitrofluoranthene in the concentration range of 2×10?8–1×10?6 mol L?1, and for determination 3‐aminofluorathnene in the concentration range of 2×10?7–1×10?5 mol L?1, respectively. Limits of determination were 3×10?8 mol L?1 (3‐nitrofluoranthene) and 2×10?7 mol L?1 (3‐aminofluoranthene).  相似文献   

14.
A highly sensitive electrochemical biosensor for the detection of trace amounts of 8‐azaguanine has been designed. Double stranded (ds)DNA molecules are immobilized onto a glassy carbon electrode surface with Langmuir–Blodgett technique. The adsorptive voltammetric behaviors of 8‐azaguanine at DNA‐modified electrode were explored by means of cyclic voltammetry and square wave voltammetry. Compared with bare glassy carbon electrode (GCE), the Langmuir–Blodgett film modified electrode can greatly improve the measuring sensitivity of 8‐azaguanine. Under the optimum experimental conditions, the Langmuir–Blodgett film modified electrode in pH 3.0 Britton–Robinson buffer solutions shows a linear voltammetric response in the range of 5.0×10?8 to 1.0×10?5 mol L?1 with detection limit 9.0×10?9 mol L?1. The method proposed was applied successfully for the determination of 8‐azaguanine in diluted human urine with wonderful satisfactory.  相似文献   

15.
An integrated amperometric fructose biosensor based on a gold electrode (AuE) modified with a self-assembled monolayer (SAM) of 3-mercaptopropionic acid (MPA) on which fructose dehydrogenase (FDH) and the mediator tetrathiafulvalene (TTF) are co-immobilized by cross-linking with glutaraldehyde is reported. Variables concerning the behavior of the biosensor were optimized by taking the slope value obtained for the fructose calibration plot in the 0.1–1.0 mM concentration range as a criterion of selection. At an applied potential of +0.20 V, a good repeatability of such slope values (RSD=6.7%, n=10) was obtained with no need to apply a cleaning or pretreatment procedure to the modified electrode. Moreover, results from five different TTF-FDH-MPA-AuEs yielded a RSD of 5.8%. The useful lifetime of one single biosensor was approximately 30 days, exhibiting a 93% of the original response on the 33rd day. A linear calibration graph was obtained for fructose over the 1.0×10–5–1.0×10–3 M range, with a limit of detection of 2.4×10–6 M. The effect of potential interferents was evaluated. The TTF-FDH-MPA-AuE also performed well in the flow-injection mode. The biosensor was used for the determination of fructose in real samples, and the results compared with those provided by using a commercial enzyme test kit.  相似文献   

16.
This paper describes the development of a new sensor based on an ionic organic film. The amphiphilic molecule, 4‐[(4‐decyloxyphenyl)‐ethynyl]‐1‐methylpyridinium iodide (10PyI), which has liquid‐crystalline properties, was synthesized and applied in the construction of a GCE/10PyI sensor. Analytical parameters for caffeic acid, repeatability (4.8 %), reproducibility (2.8 %), linearity (two ranges: 9.9×10?7 to 3.8×10?5 mol L?1 and 4.7×10?5 to 9.9×10?5 mol L?1) and detection limits (9.0×10?7 mol L?1 and 8.7×10?6 mol L?1), were determined. The method was successfully applied in the determination of total phenolic compounds (TPC) in mate herb extracts.  相似文献   

17.
The present work, regarding the determination of ultratrace Os(VIII), Ru(III) and Ir(III) in superficial waters is an interesting example of the possibility to simultaneously, or better sequentially determine each single element in real samples by voltammetry. The method is based on the catalytic current of the Os(VIII)‐ and Ru(III)‐bromate systems by square wave voltammetry and on the Ir(III) determination by square wave catalytic adsorptive stripping voltammetry. 0.5 mol L?1 acetate buffer pH 4.9+7.7×10?2 mol L?1 NaBrO3 and 0.5 mol L?1 acetate buffer pH 4.9+7.7×10?2 mol L?1 NaBrO3+2.3×10?5 mol L?1 cetyltrimethylammonium bromide (CTAB) +0.2 mol L?1 KCl were employed as the supporting electrolytes. The analytical procedure was verified by the analysis of the standard reference materials: Sea Water BCR‐CRM 403 and Fresh Water NIST‐SRM 1643d. For all the elements, the accuracy, expressed as relative error e (%), was satisfactory, being lower than 6 %, while precision as repeatability, expressed as relative standard deviation, sr (%), was generally lower than 5 %. Once set up on the standard reference materials, the analytical procedure was transferred and applied to superficial water sampled in proximity to superhighway and in the Po river mouth area.  相似文献   

18.
《Electroanalysis》2003,15(22):1751-1755
A sensitive, selective and economic stripping voltammetry is described for the determination of trace amounts of zirconium at a morin‐modified carbon paste electrode (morin‐MCPE). Zirconium(IV) can be preconcentrated on the surface of the morin‐MCPE due to forming the Zr(IV)–morin complex. The complex produces two second‐order derivative anodic peaks at 0.69 V (vs. SCE) and 0.75 V when linear‐scanning from 0.0 to 1.0 V. The optimum analytical conditions are: 2.2 mol L?1 HCl, 0.0 V accummulation potential, 90 s accummulation time, 250 mV s?1 scan rate. A linear relationships between the peak currents at 0.75 V and the Zr(IV) concentration are in the range of 2.0×10?8 to 3.0×10?6 mol L?1. The detection limit is 1.0×10?8 mol L?1 (S/N=3) for 120 s accumulation. The RSD for determination of 4.0×10?7 mol L?1 Zr(IV) is 4.8% (n=8). The proposed method has been applied to determine zirconium in ore samples, unnecessarily extracted.  相似文献   

19.
Poly(aniline‐luminol‐hemin) nanocomposites are prepared on an electrode surface through electropolymerization, and a highly sensitive electrochemiluminescence (ECL) biosensor for choline is developed based on the poly(aniline‐luminol‐hemin) nanocomposites and an enzyme catalyzed reaction of choline oxidase (CHOD). The obtained nanocomposites are characterized by scanning electron microscopy (SEM), atomic absorption spectrometry (AAS) and ECL. The results indicate that hemin can be incorporated into the poly(aniline‐luminol) nanocomposites using the facile electropolymerization method, and the poly(aniline‐luminol‐hemin) nanocomposites are rod shaped porous nanostructure. Moreover, the poly(aniline‐luminol‐hemin) nanocomposites exhibit higher ECL intensity than poly(aniline‐luminol) nanocomposites in alkaline media due to the catalytic effect of hemin on the ECL of the polymerized luminol and the electron transfer ability of hemin in the nanocomposites. CHOD is immobilized on the surface of the poly(aniline‐luminol‐hemin) nanocomposites modified electrode with glutaraldehyde, and the ECL biosensor based on poly(aniline‐luminol‐hemin)/CHOD exhibits a wider linear range for the choline detection. The enhanced ECL signals are linear with the logarithm of concentration of choline over the range of 1.0×10?11~1.0×10?7 mol L?1 with a low detection limit of 1.2×10?12 mol L?1. Moreover, the proposed biosensor is successfully applied to the detection of choline in milk.  相似文献   

20.
《Electroanalysis》2017,29(11):2638-2645
A novel sensor architecture based on thin film of tapioca decorated within nitrogen‐doped titanium dioxide (N‐TiO2) nanoparticles is reported. The nanostructures were characterized by scanning electron microscope, transmission electron microscope, X‐rays diffraction and voltammetric techniques. The proposed electrode was used for detection of low concentrations of 17‐β estradiol in without purification step, which was investigated by using linear sweep adsorptive stripping voltammetry. Under optimal conditions, the analytical curve was linear over a 17β‐estradiol concentration range of 9.9×10−6 to 1.4×10−5 mol L−1, with a detection limit of 1.7×10−7 mol L−1. The tapioca and N‐TiO2 nanoparticles homogeneous film was applied for detection of 17‐β‐estradiol in tap water and synthetic urine samples, which presented satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号