首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A composite film of ethylenediamine tetraacetic acid (EDTA)‐ZrO2 organic‐inorganic hybrid was prepared based on the chelation between Zr(IV) and EDTA. The direct electrochemical behavior of cytochrome c (cyt. c) at the hybrid film modified glassy carbon electrodes was investigated. The immobilized EDTA can promote the redox of heme in horse heart cyt. c which gives rise to a pair of reversible redox peaks with a formal potential of 40 mV (vs. SCE). The peak current increased linearly with the increase of cyt. c concentration in the range of 1.6 × 10?6—8.0 × 10?5 mol·L?1 with the correlation coefficient of 0.996. Further investigation shows that metal ions can impede the electron transfer of cyt. c. The impediment capability of metal ions depends on their coordination capability with EDTA and their valence number.  相似文献   

2.
This study describes a fast and simple methodology for the preparation of Cerium (III) Hexacyanoferrate (II) (CeHCF) nanoparticles (NPs). The NPs were characterized by fourier transform infrared (FTIR), x‐ray diffraction (XRD), scanning electron microscopy (SEM) and cyclic voltammetry (CV). The CeHCF cyclic voltammogram indicate a well‐defined redox pair assigned as Fe2+/Fe3+ in the presence of cerium (III), with a formal potential of Eθ′=0.29 V (v=100 mV s?1, KNO3; 1.0 mol/L, pH 7.0). The carbon paste electrode modified with CeHCF (CeHCF‐CPE) was applied to the catalytic electrooxidation of dopamine applying Differential Pulse Voltammetry (DPV). DPV showed linear response at two concentration ranges, from 9.0×10?7 to 8.0×10?6 and 9.0×10?6 to 1.0×10?4 mol/L, with an LOD of 1.9×10?7 and 1.0×10?5 mol/L, respectively. The CeHCF‐CPE exhibited selectivity against substances commonly found in biological samples, with redox potentials close to that of dopamine, such as urea and ascorbic acid (AA). Subsequently the CeHCF‐CPE was successfully applied to the detection of dopamine in simulated urine samples, with recovery percentages ranging between 99 and 103%.  相似文献   

3.
《Electroanalysis》2004,16(20):1734-1738
A novel biosensor by electrochemical codeposited Pt‐Fe(III) nanocomposites and DNA film was constructed and applied to the detection of uric acid (UA) in the presence of high concentration of ascorbic acid (AA). Based on its strong catalytic activity toward the oxidation of UA and AA, the modified electrode resolved the overlapping voltammetric response of UA and AA into two well‐defined peaks with a large anodic peak difference (ΔEpa) of about 380mV. The catalytic peak current obtained from differential pulse voltammetry (DPV) was linearly dependent on the UA concentration from 3.8×10?6 to 1.6×10?4 M (r=0.9967) with coexistence of 5.0×10?4 M AA. The detection limit was 1.8×10?6 M (S/N=3) and the presence of 20 times higher concentration of AA did not interfere with the determination. The modified electrode shows good sensitivity, selectivity and stability.  相似文献   

4.
ssDNA/十八酸修饰碳糊电极的制备及伏安法表征   总被引:12,自引:0,他引:12  
焦奎  张旭志  徐桂云  孙伟 《化学学报》2005,63(12):1100-1104
将石墨粉与十八酸在80 ℃下混合制成表面富含—COOH的基底碳糊电极(SA/CPE), 然后在活化剂N-羟基琥珀酰亚胺(NHS)和1-乙基-3-(3-二甲基氨丙基)碳二亚胺盐酸盐(EDC)存在下将ssDNA固定到电极表面制备ssDNA修饰电极(ssDNA/SA/CPE). 以亚甲基蓝(MB)为指示剂, 用循环伏安法对SA/CPE和ssDNA/SA/CPE进行电化学表征, 发现其在ssDNA/SA/CPE上较在SA/CPE上的氧化峰电流(ipa)和还原峰电流(ipc)分别增大1.9倍和1.7倍, 式电势(Ef)负移8 mV. 把ssDNA/SA/CPE放在互补ssDNA溶液中杂交后, MB的ipaipc较在SA/CPE上分别增大1.0倍和0.8倍, Ef负移18 mV. 用0.5 mol/L 的NaOH溶液冲洗使电极表面杂交而成的dsDNA变性洗脱, MB的伏安信号几乎与在ssDNA/SA/CPE上一样. ipc与SA/CPE上固定的ssDNA质量在1.0×10-7~5.0×10-6 g范围内成线性关系, 检测限为2.0×10-9 g (S/N=3). 这种既廉价又灵敏的电化学生物传感器有望在转基因植物产品检测研究中得到应用.  相似文献   

5.
A room temperature ionic liquid N‐butylpyridinium hexafluorophosphate (BPPF6) was used as a binder to make an ionic liquid modified carbon paste electrode (IL‐CPE), which showed good characteristics such as simple preparation procedure, fast electrochemical response and good conductivity. The electrochemical oxidation of ascorbic acid (AA) on the new IL‐CPE was carefully studied. The oxidation peak potential of AA on the IL‐CPE appeared at 109 mV (vs. SCE), which was about 338 mV decrease of the overpotential compared to that obtained on the traditional carbon paste electrode (CPE) and the oxidation peak current was increased for about four times. The electrochemical parameters of AA on the IL‐CPE were calculated with the charge transfer coefficient (α) and the electrode reaction rate constant (ks) as 0.87 and 0.800 s?1, respectively. Based on the relationship of the oxidation peak current and the concentration of AA a sensitive analytical method was established with cyclic voltammetry. The linear range for AA determination was in the range from 1.0×10?5 to 3.0×10?3 mol/L with the linear regression equation as Ip (μA)=?2.52–0.064C (μmol/L) (n=13, γ=0.9942) and the detection limit was calculated as 8.0×10?6 mol/L (3σ). The proposed method was free of the interferences of coexisting substances such as dopamine (DA) and amino acids etc., and successfully applied to the vitamin C tablets determination.  相似文献   

6.
In this paper a molecular wire modified carbon paste electrode (MW‐CPE) was firstly prepared by mixing graphite powder with diphenylacetylene (DPA). Then a graphene (GR) and chitosan (CTS) composite film was further modified on the surface of MW‐CPE to receive the graphene functionalized electrode (CTS‐GR/MW‐CPE), which was used for the sensitive electrochemical detection of adenosine‐5′‐triphosphate (ATP). The CTS‐GR/MW‐CPE exhibited excellent electrochemical performance and the electrochemical behavior of ATP on the CTS‐GR/MW‐CPE was carefully studied by cyclic voltammetry with an irreversible oxidation peak appearing at 1.369 V (vs. SCE). The electrochemical parameters such as charge transfer coefficient (α) and electrode reaction standard rate constant (ks) were calculated with the results of 0.53 and 5.28×10?6 s?1, respectively. By using differential pulse voltammetry (DPV) as detection technique, the oxidation peak current showed good linear relationship with ATP concentration in the range from 1.0 nM to 700.0 µM with a detection limit of 0.342 nM (3σ). The common coexisting substances, such as uric acid, ascorbic acid and guanosine‐5′‐triphosphate (GTP), showed no interferences and the modified electrode was successfully applied to injection sample detection.  相似文献   

7.
A novel electrochemical sensor for sensitive detection of methyldopa at physiological pH was developed by the bulk modification of carbon paste electrode (CPE) with graphene oxide nanosheets and 3‐(4′‐amino‐3′‐hydroxy‐biphenyl‐4‐yl)‐acrylic acid (3,′AA). Applying square wave voltammetry (SWV), in phosphate buffer solution (PBS) of pH 7.0, the oxidation current increased linearly with two concentration intervals of methyldopa, one is 1.0×10?8–1.0×10?6 M and the other is 1.0×10?6–4.5×10?5 M. The detection limit (3σ) obtained by SWV was 9.0 nM. The modified electrode was successfully applied for simultaneous determination of methyldopa and hydrochlorothiazide. Finally, the proposed method was applied to the determination of methyldopa and hydrochlorothiazide in some real samples.  相似文献   

8.
A novel biosensor by electrochemically codeposited Pt nanoclusters and DNA film was constructed and applied to detection of dopamine (DA) and uric acid (UA) in the presence of high concentration ascorbic acid (AA). Scanning electron microscopy and X‐ray photoelectron spectroscopy were used for characterization. This electrode was successfully used to resolve the overlapping voltammetric response of DA, UA and AA into three well‐defined peaks with a large anodic peak difference (ΔEpa) of about 184 mV for DA and 324 mV for UA. The catalytic peak current obtained from differential pulse voltammetry was linearly dependent on the DA concentration from 1.1× 10?7 to 3.8×10?5 mol·L?1 with a detection limit of 3.6×10?8 mol·L?1 (S/N=3) and on the UA concentration from 3.0×10?7 to 5.7×10?5 mol·L?1 with a detection limit of 1.0×10?7 mol·L?1 with coexistence of 1.0×10?3 mol·L?1 AA. The modified electrode shows good sensitivity and selectivity.  相似文献   

9.
A composition of multiwalled carbon nanotube (MWCNT), Nafion and cobalt(II)‐5‐nitrosalophen (CoNSal) is applied for the modification of carbon‐paste electrode (CPE). The pretreated MWCNT is well dispersed in the alcoholic solution of Nafion under the ultrasonic agitation, and the resulted suspension is used as modifier (with 10% w/w) in the matrix of the paste electrode. The prepared electrode further modified by addition of 3 wt% of CoNSal. The resulted modified electrode is used as a sensitive voltammetric sensor for simultaneous determination of uric acid (UA) and ascorbic acid (AA). The electrode showed efficient electrocatalytic activity in lowering the anodic overpotentials and enhancement of the anodic currents. This electrode is able to completely resolve the voltammetric response of UA and AA. The effects of potential sweep rate and pH of the buffer solution on the response of the electrode, toward UA and AA, and the peak resolution is thoroughly investigated by cyclic and differential pulse voltammetry (CV and DPV). The best peak resolution for these compounds using the modified electrode is obtained in solutions with pH 4. The ΔEp for UA and AA in these methods is about 315 mV, which is considerably better than previous reports for these compounds. A linear dynamic range of 1×10?7 to 1×10?4 M with a detection limit of 6×10?8 M is resulted for UA in buffered solutions with pH 4.0. The voltammetric response characteristics for AA are obtained as, the linear range of 5×10?7 to 1×10?4 M with the detection limit of 1×10?7 M. The voltammetric detection system was very stable and the reproducibility of the electrode response, based on the six measurements during one month, was less than 3.5% for the slope of the calibration curves of UA and AA. The prepared modified electrode is successfully applied for the determination of AA and UA in mixture samples and reasonable accuracies are resulted.  相似文献   

10.
In this paper, a silver doped poly(L ‐valine) (Ag‐PLV) modified glassy carbon electrode (GCE) was fabricated through electrochemical immobilization and was used to electrochemically detect uric acid (UA), dopamine (DA) and ascorbic acid (AA) by linear sweep voltammetry. In pH 4.0 PBS, at a scan rate of 100 mV/s, the modified electrode gave three separated oxidation peaks at 591 mV, 399 mV and 161 mV for UA, DA and AA, respectively. The peak potential differences were 238 mV and 192 mV. The electrochemical behaviors of them at the modified electrode were explored in detail with cyclic voltammetry. Under the optimum conditions, the linear ranges were 3.0×10?7 to 1.0×10?5 M for UA, 5.0×10?7 to 1.0×10?5 M for DA and 1.0×10?5 to 1.0×10?3 M for AA, respectively. The method was successfully applied for simultaneous determination of UA, DA and AA in human urine samples.  相似文献   

11.
Graphene nanosheets modified glassy carbon electrode (GNs/GCE) was fabricated as voltammetric sensor for rutin with good sensitivity, selectivity and reproducibility. The sensor exhibits an adsorption‐controlled, reversible two‐proton and two electron transfer reaction for the oxidation of rutin with a peak‐to‐peak separation (ΔEp) of 26 mV as revealed by cyclic voltammetry. Moreover, the redox peak current increased about 14 times than that on bare glassy carbon electrode (GCE). The linear response of the sensor is from 1×10?7 to 1×10?5 M with a detection limit of 2.1 × 10?8 M (S/N = 3). The method was successfully applied to determine rutin in tablets with satisfied recovery.  相似文献   

12.
An electrochemical method was developed for the sensitive determination of chlorogenic acid using a boron doped diamond electrode (BDDE) modified with nano‐carbon black (nano‐CB). The active surface areas were found to be 0.059 and 0.146 cm2 for the unmodified BDDE, and nano‐CB/BDDE, respectively. Compared with a BDDE, the nano‐CB/BDDE exhibited a well‐defined redox couple for chlorogenic acid. In addition, the plot of the peak current response changing from a square root to a linear dependence on scan rate is attributed to the transition from planar diffusion to surface behaviour. The anodic and cathodic peak separations (ΔEp) were 97 mV and 14 mV at BDDE and nano‐CB/BDDE, respectively. The decrease in ΔEp at the proposed electrode indicated that the process of chlorogenic acid was greatly accelerated. Square wave voltammetry (SWV) exhibited a dynamic range in which the current versus the concentration of chlorogenic acid were linear from 2.0×10?8 to 2.0×10?6 M with a LOD of 4.1×10?9 M (based on 3Sb/m). The nano‐CB modified BDDE provided improved electrochemical behavior, high electrocatalytic activity, high sensitivity and good reproducibility.  相似文献   

13.
《Electroanalysis》2006,18(17):1722-1726
The electrochemical properties of L ‐cysteic acid studied at the surface of p‐bromanil (tetrabromo‐p‐benzoquinone) modified carbon paste electrode (BMCPE) in aqueous media by cyclic voltammetry (CV) and double step potential chronoamperometry. It has been found that under optimum condition (pH 7.00) in cyclic voltammetry, the oxidation of L ‐cysteic acid at the surface of BMCPE occurs at a half‐wave potential of p‐bromanil redox system (e.g., 100 mV vs. Ag|AgCl|KClsat), whereas, L ‐cysteic acid was electroinactive in the testing potential ranges at the surface of bare carbon paste electrode. The apparent diffusion coefficient of spiked p‐bromanil in paraffin oil was also determined by using the Cottrell equation. The electrocatalytic oxidation peak current of L ‐cysteic acid exhibits a linear dependency to its concentration in the ranges of 8.00×10?6 M–6.00×10?3 M and 5.2×10?7 M–1.0×10?5 M using CV and differential pulse voltammetry (DPV) methods, respectively. The detection limits (2σ) were determined as 5.00×10?6 M and 4.00×10?7 M by CV and DPV methods. This method was used as a new, selective, rapid, simple, precise and suitable voltammetric method for determination of L ‐cysteic acid in serum of patient's blood with migraine disease.  相似文献   

14.
《Electroanalysis》2006,18(16):1598-1604
Four Schiff base complexes of different metal ions, M=Cr(III), Mn(III), Fe(III), and Co(III), were studied to characterize their ability as sulfate ion carriers in carbon paste electrode (CPE). The modified CPE electrode with Schiff base complex of Cr(III), N,N′‐ethylenebis(5‐hydroxysalicylideneiminato) chromium(III) Chloride, showed good response characteristics to SO42? ion. The proposed electrode exhibits a Nernstian slope of 28.9±0.4 mV per decade for SO42? ion over a wide concentration range from 1.5×10?6?4.8×10?2 M, with a detection limit of 9.0×10?7 M. The CPE electrode manifested advantages of relatively fast response time, suitable reproducibility and life time and, most important, good potentiometric selectivity relative to a wide variety of other common inorganic anions. The potentiometric response of the electrode is independent of the pH of the test solution in the pH range 4.0–9.0. The proposed electrode was used as an indicator electrode in potentiometric titration of sulfate with Ba2+ ion, the determination of zinc in zinc sulfate tablet and also determination of sulfate content of a mineral water sample.  相似文献   

15.
A new analytical methodology for the electrochemical detection of the herbicide maleic hydrazide (3,6‐dihydroxypyridazine) by flow injection analysis is presented. This method is supported by the novel application of a palladium‐dispersed carbon paste electrode as an amperometric sensor for this herbicide. Maleic hydrazide shows anodic electrochemical activity on carbon‐based electrodes (glassy carbon or carbon paste electrodes) in all the pH range. This electrochemical activity is enhanced using metal‐dispersed carbon paste electrodes, especially at Pd‐dispersed CPE which displays good oxidation signals at 690 mV (0.050 M phosphate buffer pH 7.0), 140 mV lower than at unmodified electrodes. Under the optimized conditions, the electroanalytical performance of Pd‐dispersed CPE in flow injection analysis was excellent, with good reproducibility (RSD 3.3%) and a wide linear range (1.9×10?7 to 1.0×10?4 mol L?1). A detection limit of 1.4×10?8 mol L?1 (0.14 ng maleic hydrazide) was obtained for a sample loop of 100 μL at a fixed potential of 700 mV in 0.050 M phosphate buffer solution at pH 7.0 and a flow rate of 2.0 mL min?1. The proposed method was applied for the maleic hydrazide detection in natural drinking water samples.  相似文献   

16.
A new electrochemical method was proposed for the determination of adenosine‐5′‐triphosphate (ATP) based on the electrooxidation at a molecular wire (MW) modified carbon paste electrode (CPE), which was fabricated with diphenylacetylene (DPA) as the binder. A single well‐defined irreversible oxidation peak of ATP appeared on MW‐CPE with adsorption‐controlled process and enhanced electrochemical response in a pH 3.0 Britton‐Robinson buffer solution, which was due to the presence of high conductive DPA in the electrode. The electrochemical parameters of ATP were calculated with the electron transfer coefficient (α) as 0.54, the electron transfer number (n) as 1.9, the apparent heterogeneous electron transfer rate constant (ks) as 2.67 × 10?5 s?1 and the surface coverage (ΓT) as 4.15 × 10?10 mol cm?2. Under the selected conditions the oxidation peak current was proportional to ATP concentration in the range from 1.0 × 10?7 mol L?1 to 2.0 × 10?3 mol L?1 with the detection limit as 1.28 × 10?8 mol L?1 (3σ) by sensitive differential pulse voltammetry. The proposed method showed good selectivity without the interferences of coexisting substances and was successful applied to the ATP injection samples detection.  相似文献   

17.
Functionalized poly‐N,N‐dimethylaniline film was prepared by adsorption of ferrocyanide onto the polymer forming at the surface of carbon paste electrode (CPE) in aqueous solution by using potentiostatic method. The electrocatalytic ability of poly‐N,N‐dimethylaniline/ferrocyanide film modified carbon paste electrode (PDMA/FMCPE) was demonstrated by oxidation of cysteamine. Cyclic voltammetry and chronoamperometry techniques were used to investigate this ability. Results showed that pH 7.00 is the most suitable for this purpose. It is found that the catalytic reaction rate constant, (kh), is equal to 2.142×103 M?1 s?1 by the data of chronoamperometry. The catalytic reduction peak current was linearly dependent on the cysteamine concentration and the linearity range obtained was 8.00×10?5 M–1.14×10?2 M. Detection limit was determined 7.97×10?5 M (2σ). This method has been successfully employed for quantification of cysteamine in real sample.  相似文献   

18.
A novel carbon paste electrode modified with carbon nanotubes and 5‐amino‐2′‐ethyl‐biphenyl‐2‐ol (5AEB) was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for electrocatalytic oxidation of levodopa (LD) and carbidopa (CD), is described. Cyclic voltammetry (CV) was used to investigate the redox properties of this modified electrode at various scan rates. The apparent charge transfer rate constant, ks, and transfer coefficient, a, for electron transfer between 5AEB and CPE were calculated as 17.3 s?1 and 0.5, respectively. Square wave voltammetry (SWV) exhibits a linear dynamic range from 2.5×10?7 to 2.0×10?4 M and a detection limit of 9.0×10?8 M for LD.  相似文献   

19.
This work reports the novel application of carbon‐coated magnetite nanoparticles (mNPs@C) as catalytic nanomaterial included in a composite electrode material (mNPs@C/CPE) taking advantages of their intrinsic peroxidase‐like activity. The nanostructured electrochemical transducer reveals an enhancement of the charge transfer for redox processes involving hydrogen peroxide. Likewise, mNPs@C/CPE demonstrated to be highly selective even at elevated concentrations of ascorbic acid and uric acid, the usual interferents of blood glucose analysis. Upon these remarkable results, the composite matrix was further modified by the addition of glucose oxidase as biocatalyst, in order to obtain a biosensing strategy (GOx/mNPs@C/CPE) with enhanced properties for the electrochemical detection of glucose. GOx/mNPs@C/CPE exhibit a linear range up to 7.5×10?3 mol L?1 glucose, comprising the entirely physiological range and incipient pathological values. The average sensitivity obtained at ?0.100 V was (1.62±0.05)×105 nA L mol?1 (R2=0.9992), the detection limit was 2.0×10?6 M while the quantification limit was 6.1×10?6 mol L?1. The nanostructured biosensor demonstrated to have an excellent performance for glucose detection in human blood serum even for pathological values.  相似文献   

20.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号