首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Summary A rigorous analysis of the effect of various concentrations (0.02–1.60M) of ammonium acetate on the distribution coefficients (K) of a number of metal ions using cation exchanger Dowex 50W-X8 (100–200 mesh NH4 +-form) has been made. On account of the low affinity of U(VI) for resin in 0.20M NH4OAc it can be separated from all other metal ions. HighK values of Sr(II), Ba(II) and Hg(II) at higher 0.50M NH4OAc are responsible for their separation from others. The abnormal column Chromatographic behaviour of Al(III) permits its separation from other metal ions including U(VI), Sr(II), Ba(II), Hg(II). A number of binary and ternary separations have been achieved.  相似文献   

2.
Adsorption behaviour of the individual tracer ions:134Cs(I),85,89Sr(II),131,133Ba (II),90Y(III),141Ce(III),152,154Eu(III),95Zr(IV),175,181Hf(IV),95Nb(V),60Co(II),115Cd(II),99mTc(VII), and131I(-I) on charcoal impregnated with stannic chloride from Hcl solutions, was investigated. Batch equilibrium distribution coefficients of the respective ions indicated strong anion exchange properties towards impregnated charcoal. The column breakthrough sorption capacity was of the order of 0.62–0.66 meq·g–1 of dry adsorbent. Small chromatographic columns of impregnated charcoal could achieve rapid and quantitative separation procedures in HCl medium. Strongly adsorbed anions such as TcO 4 and I ions could be eluted with NH4SCN and NH4NO2 eluents, respectively.  相似文献   

3.
Xylenol Orange immobilized on silica as a complex of iron(III) was used for the test determination of lead(II) and zinc(II) in drinking water over concentration ranges of 10–100 and 13–130 g/L, respectively. The maximum distribution coefficients were found to be 7.50 × 103 mL/g for Pb and 3.75 × 103 mL/g for Zn. The macro main trace components of water at a level of their maximum permissible concentrations caused no interference. Al(III), Fe(III), and Zn(II) in the presence of NH4F did not interfere with the determination of Pb(II), whereas lead in the presence of acetate caused no interference with the determination of Zn(II).  相似文献   

4.
Composite electrodes made of graphite, paraffin and metal hexacyanoferrates exhibit a voltammetric response of the hexacyanoferrate ions, the potential of which depends linearly on the logarithm of concentration of alkali and alkaline-earth metal ions. This behaviour has been observed on account of the fact that the electrochemical reaction is accompanied by an exchange of these ions between the solution and the zeolitic lattice of the hexacyanoferrates for charge compensation. The voltammetric determination of the formal potential of these electrodes in a solution allows the quantitative analysis of the ions which are exchanged between the metal hexacyanoferrates and the aqueous solutions. Iron(III), copper(II), silver(I), nickel(II) and cadmium(II) hexacyanoferrates have been studied for the determination of H+, Li+, Na+, K+, Rb+, Cs+, NH+4, Mg2+, Ca2+ and Ba2+. In some cases, the selectivity constants are as low as 310-4, or even so small that their exact value is inaccessible. Electrodes made of iron (III), copper (II), silver (I), nickel (II) and cadmium (II) hexacyanoferrates are most suitable for the determination of potassium ions. Electrodes with nickel (II) and cadmium (II) hexacyanoferrates are also suitable for the determination of caesium ions. The working range of the electrodes also depends on the conductivity of the solutions and can range from 10-5 to 1 moll-1. Typical standard deviations of the potential measurements are 3 mV.  相似文献   

5.
Summary A new qualitative reaction for the identification of amidoximes consists in the precipitation of the complex ions between iron(III) and the amidoxime with KSCN or NH4SCN as a dark-brown compound sparingly soluble in water. The sensitivities for benzamidoxime, -hydroxy-phenacetamidoxime and phenacetamidoxime are 0.5, 0.7 and 1.4 mg/ml, respectively.
Zusammenfassung Eine neue qualitative Reaktion zur Identifizierung von Amidoximen beruht auf der Fällung der Komplexionen zur Eisen(III) und dem Amidoxim mit NH4SCN oder KSCN als dunkelbrauner Niederschlag. Die gebildeten Verbindungen sind in Wasser schwer löslich. Die Empfindlichkeiten der Reaktionen mit Benzamidoxim, -Hydroxy-phenacetamidoxim und Phenacetamidoxim sind 0,5, 0,7 bzw. 1,4 mg/ml.
  相似文献   

6.
Summary Synthesis of MBAMT (3-methyl-4-benzylideneamino-5-mercapto-1,2,4-triazole) and its IR and NMR spectral data are reported. The high stability of the characteristically coloured chelates with Cu(II), Co(II), Ni(II), Pd(II), Pt(IV) and Rh(III) has been made the basis for their efficient ascending TLC separations on silica gel G layers, when present together. Results of four different solvent systems are included to assess efficient resolution of the chelates along with their limits of identification and separation. TLC separations, followed by the ring colorimetric determination of the six metal ions (as ternary mixtures) are tabulated.MBAMT=3-methyl-4-benzylideneamino-5-mercapto-1,2,4-triazole.  相似文献   

7.
The separation behavior of mercury by a flotation system consisting of ammonium sulfate, ammonium thiocyanate and ethyl violet, and the conditions for the separation of Hg(II) with other common metal ions have been studied. The studies show that in aqueous solutions, Hg(II) combines with NH4SCN and ethyl violet(EV) into dissoluble ternary ion‐association complex [Hg(SCN)42?]?(EV)2. In the presence of ammonium sulfate, the precipitate is floats well on the surface of the water phase and separates from water thoroughly. It shows that Hg(II) can be separated completely from Cd(II), Fe(II), Co(II), Ni(II), Mn(II) and Al(III) by flotation at pH1.0. The flotation mechanism of Hg(II) is described in this paper.  相似文献   

8.
Summary The distribution coefficients of Ag(I), Au(III), Cd(II), Cu(II), Fe(III), Hg(II), Ni(II), Pb(II), Pt(IV), and Zn(II) on a new chelating resin containing -hydroxydithiocinnamic acid at various acidity were studied. In the strongly acidic region, the resin shows high affinity for Ag(I), Hg(II), Au(III) and Pt(IV) and high resistance against air oxidation. The effect of diverse foreign ligands on the sorption of metal ions and the possibility of application to speciation studies with this resin were also considered. Some quantitative separations of Cd-Cu-Pb, Cu-Au and Au-Pt with this resin column were described. Detection of the chromatography system was carried out via post column derivatisation of the column effluent with PAR at 520 nm or direct UV detection of the chloride complexes at 215 nm.  相似文献   

9.
An amino acid derived ionic liquid, Fe3O4 nanoparticles and graphene oxide (GO) were used to prepare a material for the magnetic solid phase extraction (MSPE) of the ions Al(III), Cr(III), Cu(II) and Pb(II). The material was characterized by Fourier transform infrared spectral (FT-IR), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), magnetic analysis and isoelectric point (pI) analysis. It is shown to be a viable sorbent for the separation of these metal ions. Single factor experiments were carried out to optimize adsorption including pH values, ionic strength, temperature and solution volume. Following desorption with 0.1 M HCl, the ions were quantified by inductively coupled plasma optical emission spectrometry. Under the optimum conditions, the method provides a linear range from 10 to 170 μg· L?1 for Al(III); from 4.0 to 200 μg· L?1 for Cr(III); from 5.0 to 170 μg· L?1 for Cu(II); and from 5.0 to 200 μg· L?1 for Pb(II). The limits of detection (LOD) are 6.2 ng L?1 for Al(III); 1.6 ng L?1 for Cr(III); 0.52 ng L?1 for Cu(II); and 30 ng L?1 for Pb(II). Method performance was investigated by determination of these ions in (spiked) environmental water and gave recoveries in the range of 89.1%–117.8%.
Graphical abstract The graph shows that Al(III), Cr(III), Cu(II), Pb(II) are not adsorbed quantitatively by Fe3O4-SiO2. On the other hand, Cr(III) and Pb(II) are adsorbed quantitatively by Fe3O4-SiO2-GO while Al(III) and Cu(II) are not quantitatively retained. However, 3D–Fe3O4-SiO2-GO-AAIL adsorb all these 4 metal ions quantitatively.
  相似文献   

10.
The complexation tendencies of N,N-di-(-hydroxyethyl)-dithiocarbamic acid [DEADTCH, (CH2CH2OH)2NCSSH] towards a large number of metal ions have been examined. The complexes formed with transition and post-transition metal ions in slightly acidic and neutral solutions have the general formulaM(DEADTC) x, wherex is the valence state of the metal,M=Cr(III), Fe(III), Co(III), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Tl(I), and Tl(III). In addition the interesting mixed ligand complex ClHg(DEADTC) was prepared. These complexes have been characterised through X-ray, magnetic, conductance and spectral (UV and IR) measurements.  相似文献   

11.
The behavior and conditions of liquid‐liquid extraction‐separation of Fe(III) by ammonium thiocyanate‐H2O‐n‐propyl alcohol system in the presence of NaCl were studied, and the possible reactive mechanism of extraction of Fe(III) was deduced. The study showed that, in the presence of a given amount of NaCl, phases were separated thoroughly between n‐propyl alcohol and water. In the process of phase separation, the complex [Fe(SCN)n](3‐n) formed by NH4SCN and Fe(III) was quantitatively extracted into the n‐propyl alcohol phase. The extracted Fe(III) exists in the n‐propyl alcohol phase mainly as the forms of Fe(SCN)2+ and Fe(SCN)3. Also, the relationship between extraction yield of Fe(III) and the amount of NH4SCN agreed well with the quadratic equation E = 0.54 + 58.14x ? 8.39x2 (E and x represent the recovery rate of Fe(III) and the volume (mL) of 0.1 M NH4SCN respectively). The quadratic R‐Square is 0.9990. With this method, Fe(III) can be completely separated from Co(II), Ni(II), Mn(II), Al(III), Bi(III) and Cd(II) at pH 1.0?2.0. The present method was applied in determining Fe(III) in samples with satisfactory results such as relative standard deviation from 2.06% to 2.89% and recovery rate in the range of 98.4?101.4%.  相似文献   

12.
A solid-phase film electrode with an ion-sensitive membrane based on MoO3 nanorods was developed. Depending on the pH of test solution, the proposed electrode can be used as a sensor for measuring the concentration of hydrogen or alkali metal ions. In the range of 1 ≤ pH ≤ 5, the electrode reacts to changes in the concentration of hydrogen ions with an electrode response slope of 54 ± 2 mV/pH. The electrode is selec- tive to alkali metal cations in the concentration ranges of $0 \leqslant pc_{M^ + } \leqslant 4$ for M = Na, K, and Li and $1 \leqslant pc_{M^ + } \leqslant 5$ for M = Rb and Cs and the solution acidity 5 ≤ pH ≤ 13.5 with a nearly theoretical slope. The selectivity coefficients of the electrode to the ions of Na(I), Rb(I), Cs(I), Mg(II), Ca(II), Sr(II), and Ba(II) were determined.  相似文献   

13.
Summary Thin-layers of an intermediately acidic cation exchanger, cellulose phosphate (P-cellulose), have systematically been used to study the chromatographic behavior of 58 inorganic ions in both hydrochloric acid and acid ammonium thiocyanate media (0.01–2.0 mol dm−3). In both solvent systems, the R f values of many bivalent cations increase with increasing concentration of the acid and thiocyanate. Polyvalent metal ions including beryllium (II) and the others are strongly retained on the P-cellulose in the acid and thiocyanate systems tested. Palladium(II), mercury(II), ruthenium(III), rhenium(VII), arsenic(III), selenium(IV) and tellurium(IV) are not adsorbed on P-cellulose to any great extent. For silver(I), indium(III), gold(III), and platinum(IV), there are marked differences in the chromatographic behavior between hydrochloric acid and acid ammonium thiocyanate systems. Multicomponent separations conducted on P-cellulose plates with these eluents are presented.  相似文献   

14.
The isomerization reactions of the glycine radical cation, from [NH2CH2COOH]+, I, to [NH3CHCOOH]+, II, or [NH2CHC(OH)2]+, III, in the presence of a water molecule have been studied theoretically. The water molecule reduces dramatically the energy barriers of the III and IIII tautomerizations owing to a change in the nature of the process. However, the role of the water molecule depends on the kind of isomerization, the catalytic effect being more important for the IIII reaction. As a consequence, the preferred mechanism for the interconversion of glycine radical cation I to the stablest isomer, III, is the direct one-step mechanism instead of the two step (III and IIIII) process found for isolated [NH2CH2COOH]+. When using ammonia as a solvent molecule, a spontaneous proton-transfer process from [NH2CH2COOH]+ to NH3 is observed and so no tautomerization reactions take place. This behavior is the same as that observed in aqueous solution, as has been confirmed by continuum model calculations.Contribution to the Jacopo Tomasi Honorary Issue  相似文献   

15.
This paper describes the preparation of zwitterion-functionalized polymer microspheres (ZPMs) and their application to simultaneous enrichment of V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II) from environmental water samples. The ZPMs were prepared by emulsion copolymerization of ethyl methacrylate, 2-diethylaminoethyl methacrylate and triethylene glycol dimethyl acrylate followed by modification with 1,3-propanesultone. The components were analyzed by elemental analyses as well as Fourier transform infrared spectroscopy, and the structures were characterized by scanning electron microscopy and transmission electron microscopy. The ZPMs were packed into a mini-column for on-line solid-phase extraction (SPE) of the above metal ions. Following extraction with 40 mM NH4NO3 and 0.5 M HNO3 solution, the ions were quantified by ICP-MS. Under the optimized conditions, the enrichment factors (from a 40 mL sample) are up to 60 for the ions V(V), As(III), Sb(III) and Hg(II), and 55 for Cr(III) and Sn(IV). The detection limits are 1.2, 3.4, 1.0, 3.7, 2.1 and 1.6 ng L?1 for V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II), respectively, and the relative standard deviations (RSDs) are below 5.2%. The feasibility and accuracy of the method were validated by successfully analyzing six certified reference materials as well as lake, well and river waters.
Graphical abstract Zwitterion-functionalized polymer microspheres (ZPMs) were prepared and packed into a mini-column for on-line solid-phase extraction (SPE) via pump 1. Then V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II) ions in environmental waters were eluted and submitted to ICP-MS via pump 2.
  相似文献   

16.
Summary The Co(II), Ni(II), Fe(III) and V(IV) complexes of tetraphenylporphine (TPP) can be eluted at short retention times from a LiChrosorb RP-18 column with pure ethanol. However, both Mn(III) and Co(III) complexes of metal TPP chloride type are so strongly retained on the column that they cannot be eluted. While the retention of other metal teraphenylporphine complexes was not affected, that of the metal(III) complexes of the TPP chloride type especially MnTPPCl and CoTPPCl, decreases dramatically with an increase in the concentration of NH4Cl added into the mobile phase; a linear relationship between logk' and log[NH4Cl], with the slope of about–1, has been observed for these two metal(III) complexes in the NH4Cl concentration range from 2.5×10–4 to 1.3×10–2 mol/l. Thus, the specific control of the retention of the metal(III) complexes is enabled by conditioning the NH4Cl content of the mobile phase, and the chromatographic separation is demonstrated.  相似文献   

17.
New macromolecular chelators have been synthesized, by loading 2,3-dihydroxypyridine (DHP) on cellulose via linkers -NH-CH2-CH2-NH-SO2-C6H4-N=N- and -SO2-C6H4-N=N-, and characterized by elemental analysis, TGA, IR, and CPMAS 13C NMR spectra. The cellulose with DHP anchored by the shorter linker had better sorption capacity (between 69.7 and 431.1 mol g–1) for Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II), and Fe(III)) than the other (51.9–378.1 mol g–1); the former was therefore studied in detail as a solid extractant for these metal ions. The optimum pH ranges for quantitative sorption (recovery 97.6–99.8%) on this matrix were: 7.0–9.0, 6.0–9.0, 3.0–8.0, 6.0–8.0, 6.0–9.0, 6.0–7.0, and 2.0–6.0 respectively. Desorption was quantitative with 0.5 mol L–1 HCl and 0.5 mol L–1 HNO3 (for Pb). Simultaneous sorption (at pH 7.0) of all metal ions other than Fe(III) was possible if their total concentration did not exceed the sorption capacity (lowest value). The recovery of seven metal ions from their mixture at pH 6.0 was nearly quantitative when the concentration level of each metal ion was 0.2 g mL–1. The optimum flow rate of metal ion solutions for quantitative sorption of metal onto a column packed with DHP-modified cellulose was 2–7 mL min–1, whereas for desorption the optimum flow rate for the acid solution was 2–4 mL min–1. The time needed to reach 50% of the total loading capacity (t1/2) was <5 min for all the metal ions except Ni and Pb. The limit of detection (blank+3s) was from 0.70 to 4.75 g L–1 and the limit of quantification (blank+10s) was between 0.79 and 4.86 g L–1. The tolerance limits for NaCl, NaBr, NaI, NaNO3, Na2SO4, Na3PO4, humic acid, EDTA, Ca(II), and Mg(II) for sorption of all metal ions are reported. The column packed with DHP-anchored cellulose can be reused at least 20 times for enrichment of metal ions in water sample. It has been used to enrich all the metal ions in pharmaceutical and water samples before their determination by flame AAS. RSD for these determinations was between 1.1 and 6.9%.  相似文献   

18.
Summary The reversible complex formation between oxalatopentaammine cobalt(III), aluminium(III) and gallium(III) was investigated by the stopped flow technique at 30 ± 0.1 °C and I = 1.0 mol dm–3. The reactivity sequence: GaIII > AlIII is observed, however, the major path for gallium(III) was (NH3)5CoC2O4H2+ + GaOH2+ (NH3)5CoC2O4-Ga4+ + H2O. The formation and dissociation rate constants of the binuclear species have been compared with the analogous data for iron(III) and nickel(II) reported earlier. The results reflect the fact that the half-bonded exalato moiety of (NH3)5CoC2O inf4 p+ acts as a chelating agent for the metal ions.Author to whom all correspondence should be directed.  相似文献   

19.
The coupled transport of Cu(II), Cd(II) and Ni(II) ions through a bulk liquid membrane (BLM) containing pyridine-2-acetaldehyde benzoylhydrazone (2-APBH) as carrier dissolved in toluene has been studied. Once the optimal conditions of extraction of each metal were established, a comparative study of the transport kinetics for these metals was performed by means of a kinetic model involving two consecutive irreversible first-order reactions. The kinetic parameters (apparent rate constants of the metal extraction and re-extraction reactions (k 1, k 2), the maximum reduced concentration of the metal in the liquid membrane (), the time of the maximum value of R o ( t max) and the maximum entry and exit fluxes of the metal through the liquid membrane ( and ) of the extraction and stripping reactions were evaluated and results showed good agreement between experimental data and theoretical predictions. Complete transport through the membrane took place according to the following order: Cd(II)>Cu(II)>Ni(II), with similar kinetic parameters obtained for Cu(II) and Cd(III). The transport behaviour of Ni(II) was different to that of Cu(II) and Cd(III), probably due to the different stoichiometry of the nickel complex compared to those of the other metal ions and the different chemical conditions required for its formation. The influence of the sample salinity on the transport kinetics was studied. k 1 values decreased slightly when the feed solution salinity was increased for Cu(II) and Ni(II), but not for Cd(II). Values of k 2 were practically unaffected. The proposed BLM was applied to the preconcentration and separation of metal ions (prior to their determination) in water samples with different saline matrices (CRM, river water and seawater), and good agreement with the certified values was obtained.  相似文献   

20.
The thiocyanato bridged mixed-valence ruthenium dinuclear species [{Ru(NH3)5}2SCN]4+ has been prepared and characterized. A solvent independent, low intensity intervalence transfer band was observed in the near IR absorption spectrum suggesting a delocalized limit in the [Ru(II)-SCN-Ru(III)] unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号