首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Illite samples from Fithian, IL were purified and saturated with Na(+) ions. The acid-base surface chemistry of the Na-saturated illite was studied by potentiometric titration experiments with 0.1, 0.01, and 0.001 M NaNO(3) solutions as the background electrolyte. Results showed that the titration curves obtained at different ionic strengths did not intersect in the studied pH range. The adsorption of Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) onto illite was investigated as a function of pH and ionic strength by batch adsorption experiments. Two distinct mechanisms of metal adsorption were found from the experimental results: nonspecific ion-exchange reactions at lower pH values on the basal surfaces and 'frayed edges' and specific adsorption at higher pH values on the mineral edges. Ionic strength had a greater effect on the ion-exchange reactions. The binding constants for the five heavy metals onto illite were determined using the least-square fitting computer program FITEQL. Linear free energy relationships were found between the surface binding constants and the first hydrolysis constants of the metals.  相似文献   

2.
Adsorption of mercury(II) and methylmercury by two tannin sorbents was investigated using radiotracers. High sorption capacities for mercury are registered for both sorbents at pH 7. ForEucaliptus Saligna Sm sorbent (ETS) the maximum sorption capacity was 1.2±0.2 mmol/g and forLysiloma latisiliqua sorbent (LTS) was 8.5±0.2 mmol/g. Methylmercury adsorption maximum was recorded at pH 4 and in buffered solutions at pH2. This species can be recovered in the presence of mercury(II). Influence of different ions present in water was examined. High recoveries were reported for ETS in tap water samples but a decrease of uptake is observed for seawater.  相似文献   

3.
A new chelating resin, 1-(2-pyridylazo)-2-naphthol (PAN) coated Amberlite XAD-1180 (AXAD-1180), was prepared and used for the preconcentration of Cd(II), Mn(II), Ni(II), Pb(II) and Zn(II) ions prior to their determination by flame atomic absorption spectrometry (FAAS). The optimum pH for simultaneous retention of the elements and the best elution means for their simultaneous elution were pH 9.5 and 3 M HNO3, respectively. The sorption capacity of the resin was found to be 5.3 mg/g for Cd and 3.7 mg/g for Ni. The detection limits for Cd(II), Mn(II), Ni(II), Pb(II) and Zn(II) were 0.7, 10, 3.1, 29 and 0.8 μg/L, respectively. The effects of interfering ions for quantitative sorption of the metal ions were investigated. The preconcentration factors of the method were in the range of 10–30. The recoveries obtained were quantitative (≥95%). The standard reference material (GBW07605 Tea sample) was analysed for accuracy of the described method. The proposed method was successfully applied to the analysis of various water, urea fertilizer and tea samples. The article is published in the original.  相似文献   

4.
The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.  相似文献   

5.
The adsorption of copper(II), zinc(II), nickel(II), lead(II), and cadmium(II) on Amberlite IR-120 synthetic sulfonated resin has been studied at different pH and temperatures by batch process. The effects of parameters such as amount of resin, resin contact time, pH, and temperature on the ion exchange separation have been investigated. For the determination of the adsorption behavior of the resin, the adsorption isotherms of metal ions have also been studied. The concentrations of metal ions have been measured by batch techniques and with AAS analysis. Adsorption analysis results obtained at various concentrations showed that the adsorption pattern on the resin followed Freundlich isotherms. Here we report the method that is applied for the sorption/separation of some toxic metals from their solutions.  相似文献   

6.
Optimal parameters of beryllium(II) sorption from aqueous solutions by polystyrene-based sorbents have been studied, namely: optimal sorption acidity (pHopt), pH providing 50% sorption (pH50), optimal time (τ, min) and temperature of quantitative sorption. The sorption capacities of the sorbents under study (SCSs) for beryllium(II) have also been determined; sorption isotherms have been constructed. The parameters determined for beryllium(II) sorption by chelating polymer sorbents (CPSs) make it possible to select the most efficient sorbent for practical use.  相似文献   

7.
Paper electrophoresis has been used for uranium(VI) separation from Fe(II), Co(II), Ni(II) and Cu(II). The background electrolyte (0.1M HNO3-NaNO3) at different pH values contains diethyldithiophosphoric acid as complexing agent. A plot of mobility versus pH is used to obtain information on the formation of dithiophosphate complexes and to compute the stability constant of an uranyldiethyldithiophosphate complex.  相似文献   

8.
Dioctylarsinic acid (HDOAA) in chloroform solution has been investigated as a reagent for the extraction of Hg(II), Ag(I), Co(II), and Cd(II). Silver, cobalt and cadmium are not extracted below pH 7. An extraction coefficient of 1.1, constant over the pH range 1–6.5, was observed for Hg(II). With HCl concentrations of 1–8 M the extractability of mercury decreased slowly, reaching Ea0 = 0.05 at 8 M HCl. Silver formed a silver dioctylarsinate precipitate which collected at the interface. The extraction coefficients for Hg(II), Co(II) and Cd(II) increased above pH 7 to values of 20 (pH 9.1), 30 (pH 8.0), and 23 (pH 10), respectively. Reagent- and pH-dependence studies indicated that Co(II) and Cd(II) are extracted as M(DOAA)2 or M(DOAA)Cl through interaction of HDOAA with M(OH)2 or M(OH)+. Mercury was extracted from solutions of pH 1–6.5 as HgCl2 (HDOAA)2.5.  相似文献   

9.
In this study, biosorption of cobalt(II), chromium(III), cadmium(II), and lead(II) ions from aqueous solution was studied using the algae nonliving biomass (Neochloris pseudoalveolaris, Np) as natural and biological sorbents. The effect of pH, contact time, temperature, and metal concentration on the adsorption capacity of metal ions was investigated. The maximum adsorption capacities for Co(II), Cr(II), Cd(II), and Pb(II) were found to be 20.1, 9.73, 51.4 and 96.2 mg/g at the optimum conditions, respectively. The experiments showed that when pH increased, an increase in the adsorption capacity of the biomass was observed too. The kinetic results of adsorption obeyed a pseudo second-order model. Freundlich and Langmuir isotherm models were applied to experimental equilibrium data of metal ions adsorption and the value of R L for Pb(II), Cb,(II), Co(II), and Cr(III) was found to be 0.376, 0271, 0872, and 096, respectively. The thermodynamic parameters related to the adsorption process such as E a , ΔG 0, ΔH 0, and ΔS 0 were calculated. ΔH 0 values (positive) showed that the adsorption mechanism was endothermic. Weber-Morris and Urano-Tachikawa diffusion models were also applied to experimental equilibrium data. The algae biomass was effectively used as a sorbent for the removal of metal ions from aqueous solutions.  相似文献   

10.
Optimal conditions for strontium(II) sorption by new complexing polymeric sorbents (CPSs) from aqueous solutions were studied, namely, optimal solution acidity (pHopt), pH of 50% sorption (pH50), and optimal time and temperature of quantitative sorption. The strontium(II) sorption capacities of the test sorbents (SCSs) were determined, and sorption isotherms were plotted. The strontium(II) sorption parameters determined were used to recognize the most efficient CPSs.  相似文献   

11.
Extraction of Hg(II), Se(IV), Mn(II) and Co(II) has been carried out with 1-phenyl-3-methyl-4-trifluoroacetyl-2-pyrazolin-5-one (HPMTFP) and triphenylphosphine oxide (TPPO) into chloroform from pH 1–10. Quantitative extraction of Hg(II), Mn(II) and Co(II) at pH 4 with equimolar 0.05M (PMTFP+TPPO) in chloroform was observed. Se(IV) remains unextracted at this pH range. The stoichiometric composition of the extracted complexes M(PMTFP)2·nH2O (M=Mn, Hg), M(PMTFP)2·2TPPO (M=Mn and Co) and Co(PMTFP)2·TPPO·H2O at less than 0.1M TPPO has been established. The formation constantsK m,0 andK m,n and stability constants m,n have been computed. The analytical method developed was applied to the IAEA standard reference material (SRM) potato fluor V-4 for the determination of these elements using NAA technique.  相似文献   

12.
The chemically modified silica, obtained by reacting 2-mercaptobenz-imidazole with 3-chloropropyl silica gel, was used to adsorb Cu(II), Zn(II), Cd(II) and Pb(II) from aqueous solutions at various pH. Between pH 3–5, the order of selectivity was Hg(II) > Cd(II) Cu(II) Zn(II) Pb(II). Under batch conditions retentions of 100% were achieved for all metals except for Pb(II) where 93% was attained. Under column conditions recoveries of 100% were obtained for all metals.  相似文献   

13.
Sorption of platinum(II) and platinum(IV) chloride complexes on nitrogen-containing fibrous sorbents derived from polyacrylonitrile with aminoguanidine groups (GLIPAN-3) was studied as influenced by the temperature, platinum concentration in the solution, and pH of the solution. The kinetic sorption parameters and the sorption capacities of the sorbents in hydrochloric acid and chloride solutions were determined. The sorption mechanism and the composition of platinum compounds formed in the sorbent phase were suggested.__________Translated from Zhurnal Prikladnoi Khimii, Vol. 78, No. 5, 2005, pp. 729–735.Original Russian Text Copyright © 2005 by Simanova, Kuznetsova, Konovalov, Shchukarev.  相似文献   

14.
Kumar M  Rathore DP  Singh AK 《Talanta》2000,51(6):1187-1196
A stable chelating resin matrix was synthesized by covalently linking o-aminophenol (o-AP) with the benzene ring of the polystyrene–divinylbenzene resin, Amberlite XAD-2, through a –N=N– group. Elemental analyses, thermogravimetric analysis (TGA) and infrared spectra have characterized the resulting chelating resin. It has been used to preconcentrate Cu2+, Cd2+, Co2+, Ni2+, Zn2+ and Pb2+, prior to their determination by flame atomic absorption spectrometry. The optimum pH values for quantitative sorption of Cu, Cd, Co, Ni, Zn and Pb are 6.2–7.4, 5.6–7.2, 5.6–9.0, 6.0–9.0, 5.7–7.0 and 5.0–6.0, respectively. These metals are desorbed (recovery 91–98%) with 4 mol dm−3 HNO3. The sorption capacity of the resin is 3.37, 3.42, 3.29, 3.24, 2.94 and 3.32 mg of metal g−1 of resin, respectively, for Cu, Cd, Co, Ni, Zn and Pb. The effect of NaF, NaCl, NaNO3, Na2SO4, and Na3PO4 on the sorption of these metal ions has been investigated. These electrolytes are tolerable up to 0.01 mol dm−3 in case of all the metal ions, except Cl which is tolerable even up to 0.1 mol dm−3 for Zn and 1.0 mol dm−3 for Pb. The preconcentration factor for Cu, Cd, Co, Ni, Zn and Pb are 50, 50, 100, 65, 40 and 40 (concentration level 10–25 μg dm−3) respectively. Simultaneous enrichment of the six metals is possible. The method has been applied to determine Cu, Cd, Co, Ni, Zn and Pb content in well water samples (RSD≤8%).  相似文献   

15.
The interaction of amoxicillin anions (Axn?) with Mn2+, Co2+, Ni2+, Zn2+, and Cd2+ in aqueous solution at 20°C and an ionic strength of 0.1 (KNO3) has been studied pH-metrically. In a neutral and weak alkaline solution, MAxn+ and M(OH)Axn complexes are formed. The formation constants and the pH ranges of existence of these complexes have been determined.  相似文献   

16.
The effects of pH, ionic strength and concentration on the sorption of Th(IV) on alumina and silica were investigated and the sorption isotherms of Th(IV) on alumina and silica at different pH values were determined. It was found for both sorbents that the absorbability of silica is less than that of alumina. The relative sorption rate of silica is similar to that of alumina. The sorption edges are similar to each other, that the insensitivity of sorption to ionic strength is about the same. These similarities between the sorbents suggest that the speciation of Th(IV) in aqueous solutions plays a significant, but subtle role, in controlling the sorption process, because the charges of both sorbents are distinctly different. The mechanism of Th(IV) sorption on alumina is distinctly different from that of the sorptions of Cs+, Eu3+ and Yb3+ on alumina, and similar to that of the sorption of Co(II) on alumina.  相似文献   

17.
Calcium hydroxyapatite (CaHAP) and barium hydroxyapatite (BaHAP) have been prepared by a wet method from aqueous solutions with cation/P molar ratio of 1.67. The prepared particles were characterized using XRD, IR, TG-DTA and BET-N(2) adsorption measurements. The potential of the synthesized hydroxyapatites to remove Zn(II) from aqueous solutions was investigated in batch reactor under different experimental conditions. Both hydroxyapatites remove Zn(II) from aqueous solutions with an efficiency higher than 98% at initial pH around 6-8. The data reveal that the initial uptake was rapid and equilibrium was established in 20 and 60 min for CaHAP and BaHAP. The sorption process follows the pseudo-first-order kinetic with a rate constant (k(ads)) equals to 1.06x10(-2) and 1.91x10(-2) min(-1) for CaHAP and BaHAP, respectively. Zn(II) removal was quantitatively evaluated using Langmuir isotherm model and the monolayer sorption capacity (Q(max)) shows the values 102.04 and 36.62 mg g(-1) for CaHAP and BaHAP clarifying the high affinity of these novel sorbents for Zn(II) ions. Kinetically, the prepared apatites are feasible sorbents retain Zn(II) ions through a favorable and spontaneous sorption process. The possibility of metal recovery and regeneration of hydroxyapatites were investigated using several eluting agents include hydrochloric acids, double distilled water, calcium chloride, barium hydroxide, and copper chloride. Different desorption levels were obtained with the different adsorbents and the maximum recovery yield was achieved with copper chloride.  相似文献   

18.
《Analytical letters》2012,45(12):1009-1021
Abstract

The solvent extraction of the transition metals(II)4-(2-thia-zolylazo)resorcinol(TAR) chelate anions with cation of zephiramin (Z+ Cl?) was spectrophotometrically investigated. The composition of the extracted species was estimated to be 2Z+ MR2 2-, which had the absorption maxima in the same ranges of wavelength at about 550 nm, and the constant extractions were obtained at pH 6.7–10.2 for cobalt, 7.2–9.1 for nickel, 8.2–10.1 for zinc, and 8.5–10.7 for copper system. In the presence of sodium chloride, cobalt chelate could be effectively separated from the other transition metals. The extraction equilibrium was also investigated and the extraction constants were calculated.  相似文献   

19.
Three new IMAC chelating systems, incorporating immobilised xylenyl-bridged bis(1,4,7-triaza-cyclonane) ligands, complexed with Cu(2+) ions to form binuclear species, have been prepared. Their binding properties have been investigated with three small globular proteins (hen egg white lysozyme, horse skeletal muscle myoglobin and horse heart cytochrome c). The effects of buffer pH, ionic strength and composition on the binding behaviour of these proteins to these new IMAC sorbents have been examined and compared with those found for the corresponding immobilized mononuclear copper complex of 1,4,7-triazacyclononane (tacn). Higher protein binding affinities were observed with the Cu(2+)-bis(tacn) sorbents compared to the Cu(2+)-tacn system, consistent with the immobilized binuclear copper(II) species undergoing enhanced coordinative interaction with the surface-exposed histidine residues of these proteins. Moreover, the protein binding characteristics of these IMAC sorbents at higher ionic strengths, such as 1M NaCl, also reflect the presence of the aromatic ring in the bis(tacn) ligands, whereby hydrophobic pi/pi stacking interactions can occur with the proteins.  相似文献   

20.
Total dissolved and labile concentrations of Cd(II), Cu(II), Ni(II) and Pb(II) were determined at six locations of the Bourgas Gulf of the Bulgarian Black Sea coast. Solid phase extraction procedure based on monodisperse, submicrometer silica spheres modified with 3-aminopropyltrimethoxysilane followed by the electrothermal atomic absorption spectrometry (ETAAS) was developed and applied to quantify the total dissolved metal concentrations in sea water. Quantitative sorption of Cd, Cu, Ni and Pb was achieved in the pH range 7.5–8, for 30?min, adsorbed elements were easily eluted with 2?mL 2?mol?L?1 HNO3. Since the optimal pH for quantitative sorption coincides with typical pH of Black Sea water (7.9–8.2), on-site pre-concentration of the analytes without any additional treatment was possible. Detection limits achieved for total dissolved metal quantification were: Cd 0.002?µg?L?1, Cu 0.005?µg?L?1, Ni 0.03?µg?L?1, Pb 0.02?µg?L?1 and relative standard deviations varied from 5–13% for all studied elements (for typical Cd, Cu, Ni and Pb concentrations in Black Sea water). Open pore diffusive gradients in thin films (DGT) technique was employed for in-situ sampling and pre-concentration of the sea water and in combination with ETAAS was used to determine the proportion of dynamic (mobile and kinetically labile) species of Cd(II), Cu(II), Ni(II) and Pb(II) in the sea water. Obtained results showed strong complexation for Cu and Pb with sea water dissolved organic matter. The ratios between DGT-labile and total dissolved concentrations found for Cu(II) and Pb(II) were in the range 0.2–0.4. For Cd and Ni, these ratios varied from 0.6 to 0.8, suggesting higher degree of free and kinetically labile species of these metals in sea water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号