首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This study focuses on the optimization process of silica synthesis using the sol-gel method while applying a statistical design of experiments which was based on a multilevel mathematical model. The product obtained in the process of optimized synthesis, characterized by the best dispersive and morphological parameters, was used for the preparation of organic/inorganic composites. The organic precursor was Kraft lignin, a high-molecular natural polymer. Synthesis of silica/lignin biocomposites was carried out by three proposed methods. The physicochemical properties and dispersive-morphological properties of each product were determined using the following available methods: Scanning Electron Microscopy — SEM, Non-Invasive Back-Scattering — NIBS, Fourier Transform Infrared Spectroscopy — FT-IR, Thermogravimetric analysis — TG and others. The electrokinetic and thermal properties of the biocomposites sufficed to be applied for example, as a cheap and biodegradable polymer filler. Further areas of application of these composites were sought, especially in electrochemistry as the advanced electrode materials.   相似文献   

2.
Methylcellulose (MC) / SiO2 organic / inorganic hybrid materials have been prepared from MC and methyltriethoxysilane or ethyltrimethoxysilane, and characterized by XRD, FTIR and AFM. XRD showed peak shifts. FTIR shows intermolecular hydrogen bonding between MC and SiO2. AFM depicts surface roughness which depends on the silica precursor and MC content.   相似文献   

3.
The research reported here concerns the synthesis, characterization and potential applications of silica/lignosulfonate hybrid materials. Three types of silica were used (Aerosil®200, Syloid®244 and hydrated silica), along with magnesium lignosulfonate. The effectiveness of the hybrid material synthesis methodology was confirmed indirectly, using Fourier transform infrared spectroscopy, elemental and colorimetric analysis. Dispersive-morphological analysis indicates that the products with the best properties were obtained using 10 parts by weight of magnesium lignosulfonate per 100 parts of Syloid®244 silica. The relatively high thermal stability recorded for the majority of the synthesized products indicates the potential use of this kind of a material as a polymer filler. Results indicating the high electrokinetic stability of the materials are also of great importance. Additionally, the very good porous structure properties indicate the potential use of silica/lignosulfonate systems as biosorbents of hazardous metal ions and harmful organic compounds.   相似文献   

4.
Effects of chlorides of univalent (LiCl, NaCl, KCl), bivalent (MgCl2, BaCl2) and trivalent (AlCl3) metals at different concentration (0.001–0.1 M) on the behavior of nanosilica A-200 (0.5–5 wt.%) in aqueous media are analyzed using photon correlation spectroscopy (particle size distribution, PSD), electrophoresis (zeta potential ζ), potentiometric titration (surface charge density), and estimation of screening length of primary particles and their aggregates. The zeta potential and the PSD are affected by silica content, pH, and concentration and type of dissolved salts. Smaller but more strongly hydrated Li+ cations caused stronger nonlinear dependences of the zeta potential on pH and salt content than Na+ or K+. This nonlinearity is much stronger at a lower content of silica (0.5–1 wt.%) than at C A-200 = 2.5 or 5 wt.%. At a high concentration of nanosilica (5 wt.%) the effect of K+ ions causes stronger diminution of the negative value of the zeta potential due to better adsorption of larger cations. Therefore, the influence of K+ on increasing screening length is stronger than that of Na+ for both primary nanoparticles and their aggregates. A similar difference in the ζ values is observed for different in size cations Ba2+ and Mg2+.   相似文献   

5.
The optimal parameters for ultrasonic treatment (frequency 200–300 kHz, intensity 2–4 W cm?2) were obtained to intensify Pb(II) and Cd(II) sorption concentration by carbon sorbent from apricot pit. The combined action of ultrasonic frequency of 18 kHz and 1 MHz on concentrate slurry increases its sedimentation stability from 3 to 180 minutes and decreases Sr value up to 7% at Pb(II), Cd(II) hybrid sorption atomic absorption determination in natural waters, brines, common salt.   相似文献   

6.
A facile and easily controlled route was designed to synthesize nano-structured Fe2O3, CuO, and CuO/Fe2O3 hybrid oxides with different Cu/Fe molar ratios via a hydrothermal procedure. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and field-emission scanning electron microscopy (FE-SEM). The results showed that the morphologies of the samples changed with different Cu/Fe ratios. The electrocatalytic properties of the samples modified on a glassy carbon electrode for p-nitrophenol reduction in a basic solution were investigated. The results indicated that CuO/Fe2O3 hybrids with lower Cu/Fe ratio exhibited higher electrocatalytic activity. The photocatalytic performances of the samples for methyl orange degradation with assistance of oxydol under irradiation of visible light were studied. The results revealed that CuO/Fe2O3 hybrids with higher Cu/Fe ratio showed efficient photocatalytic activity.   相似文献   

7.
Silver nanoparticles (AgNPs) were obtained by a redox reaction, using a glucose-containing cyclosiloxane as a reduction agent and stabilizer. Then the AgNPs aqueous solution was used as the reaction medium for the sol-gel process, starting from tetraethylorthosilicate (TEOS) as silica precursor. The nanocomposite material resulted (SilAg) after solvent removal, aging and calcination and was investigated by infrared spectroscopy (FT-IR), atomic force microscopy (AFM), scanning electron microscopy coupled with energy dispersive X-ray system (SEM/EDX), transmission electron microscopy (TEM), energy-dispersive X-ray fluorescence spectroscopy (EDXRF), X-ray diffraction (XRD) and dynamic vapor sorption (DVS). The results were compared to model silicas obtained without silver. A higher condensation degree in SilAg was obtained due to the basic medium used in the first step and was confirmed by a sorption capacity lower than for the model silicas. The solid surface area calculated with GAB analysis using DVS data for the water vapors is 210 m2 g?1. The nanocomposite showed good catalytic activity for hydrogen peroxide decomposition.   相似文献   

8.
The purpose of the present study is the preparation and characterization of collagen/antitumor drug hybrids as drug delivery systems. Materials used for obtaining collagen-based drug delivery systems were collagen type I (Coll) as matrix and irinotecan (I) as hydrophilic active substances. After incorporation of I into Coll in differing ratios, the obtained hybrid materials (Coll/I) could be used according to our results as potential drug delivery systems in medicine for the topical (local) treatment of cancerous tissues or bone. The released amount of I varies with amount of Coll from hybrid materials: the higher, the slower the release amount of irinotecan transferred is in the first 6 hours. The in vitro citotoxicity demonstrates an antitumoral activity of the obtained hybrid materials and their potential use for biomedical applications as drug delivery systems in tumoral treatments.   相似文献   

9.
The influence of anionic poly(acrylic acid) — PAA addition on the stability of synthesized silica, alumina and mixed silica-alumina suspensions as a function of solution pH was studied. The turbidimetry method was used to monitor the changes of the examined systems stability over time. The calculated stability coefficients enabled estimation of polymer adsorption influence on stability of metal oxide suspension. It was shown that the alumina suspension without the polymer is the most unstable at the pH values 6 and 9, whereas the silica polymer was most unstable at pH 3. PAA with higher molecular weight (240 000) is a relatively effective stabilizer of all investigated adsorbents (except silica at pH 3). These properties of poly(acrylic acid) are highly desirable in many branches of industry (e.g. production of cosmetics, pharmaceuticals, paints) where polymers are widely used as effective stabilizers of colloidal suspensions.   相似文献   

10.
Hydroxyapatite composites are the main biomaterials used for metal implant coatings. Their in vitro study is very important. That is why their behavior was monitored in simulated body fluid (SBF), which is a solution with ion concentrations and pH value similar to those of human blood plasma. Silica, chitosan and gelatin-doped hydroxyapatite-based biomaterials were studied in SBF; the samples were characterized pre-, during and post-SBF immersion using infra-red, scanning and transmission electron spectroscopy and X-ray diffraction methods. The solubility of materials in SBF was determined, and the variation of Ca2+ and phosphorus concentration was also recorded during SBF experiments. The results were compared and their in vitro biological activity was determined.   相似文献   

11.
This paper is focused on the synthesis and characterization of a novel hybrid material based on cisplatin and docetaxel-loaded functionalized simultanously carbon nanotubes able to be used in cancer therapy as drug delivery system with controlled toxicity. This material was physico-chemically investigated by determining the structure, as evidenced by Fourier transform infrared (FTIR) spectroscopy, transmission electronmicroscopy (TEM) and its stability was studied with the aid of thermogravimetric analysis (TGA). The amount of platinum ions released into the solution of simulated body fluid (SBF) was highlighted by coupled plasma mass spectrometry (ICP-MS). Toxicology experiments were performed with MDA-MB 231 breast cancer epithelial cells. The performance of the new drug delivery hybrid material was compared with functionalised carbon nanotubes with therapeutic agents functionalized with a single therapeutic agent.   相似文献   

12.
Yttrium silicate doped with cerium (Y2SiO5:Ce) was obtained from Y-Ce-Si based precursors prepared by the simultaneous addition of reagents (SimAdd) technique. The synthesis of the precursors was done in well controlled conditions using ammonium oxalate, ammonium carbonate or urea as precipitating agents. Results regarding the influence of precipitating agents on the morpho structural and photoluminescent characteristics of Y2SiO5:Ce are reported. The TG analysis in correlation with EGA, FT-IR and XRD investigations reveals the formation of oxalate, hydroxy-carbonate or hydroxy-nitrate based compounds, the same as the conversion of the precursors to well crystallized yttrium silicate. XRD patterns show that the precursors are amorphous except for the sample prepared with ammonium oxalate. Depending on the precipitation conditions, the phosphors phase composition varies from single phase (X2-Y2SiO5) to a mixture of phases (X2-Y2SiO5, X1-Y2SiO5, Y2O3). Under UV excitation, phosphors exhibit the specific blue emission of cerium with an intensity that varies from 175.8% (urea) to 96.0% (ammonium carbonate) and to 78.5% (ammonium oxalate). The emission intensity depends on the phase purity and order degree of the phosphors. PACS Classification codes:78.55 Hx, 81.20Fw   相似文献   

13.
ZnS nanoparticles were precipitated in diluted aqueous solutions of zinc and sulphide ions without capping additives at a temperature interval of 0.5–20°C. ZnS nanoparticles were arranged in large flocs that were disaggregated into smaller agglomerates with hydrodynamic sizes of 70–150 nm depending on temperature. A linear relationship between hydrodynamic radius (R a ) and temperature (T) was theoretically derived as R a =652 - 2.11 T. The radii of 1.9–2.2 nm of individual ZnS nanoparticles were calculated on the basis of gap energies estimated from their UV absorption spectra. Low zeta potentials of these dispersions of ?5.0 mV to ?6.3 mV did not depend on temperature. Interactions between individual ZnS nanoparticles were modelled in the Material Studio environment. Water molecules were found to stabilize ZnS nanoparticles via electrostatic interactions.   相似文献   

14.
Copper-cobalt ferrites with composition Cu1?xCoxFe2O4, where x= 0.2 and 0.8 were prepared by thermal treatment of co-precipitated precursor. The obtained materials were characterized by TG-DSC, XRD, Transmission and Conversion Electron Mössbauer spectroscopy and temperature programmed reduction with hydrogen. The catalytic properties of ferrites were tested in methanol decomposition to CO and hydrogen.   相似文献   

15.
The thermal decomposition of five double-base propellants modified with RDX was studied by dynamic pressure thermal analysis to determine the effect of RDX content (20–60 wt.%) on performance. All have good stability. Both stability and activation energy increase as RDX increases from 20% to 50% then decrease; 50% RDX performs best. The decomposition mechanism is affected by RDX content and temperature. Increasing temperature induces autocatalysis and accelerates decomposition.   相似文献   

16.
The corrosion properties of the passive layers formed on iron-nickel-chromium electrodeposits of Fe29Ni51Cr20 were investigated in 0.3 M borate solution at a‘ pH of 8.4. On the basis of measurements by cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy, a low passive dissolution/corrosion rate was identified for the electrodeposited Fe-Ni-Cr alloys due to the nature of the established corrosion layer. The stability of this passive layer was further enhanced after corrosion under oxidizing conditions. Mössbauer spectroscopic measurements confirmed the existence of a thin passive layer on the amorphous electrodeposits.   相似文献   

17.
Growth processes of nanocomposite layers obtained by polyelectrolytes, poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC), self-assembled on silicon surface using layer-by-layer (LbL) technique were investigated, and theoretical and experimental data are herein reported. Complementary microstructural and compositional analyses techniques (scanning electron microscopy, ellipsometry, X-ray reflectivity, zeta (ξ) potential measurements and attenuated total reflection infrared spectroscopy) were used for deep characterization of the multilayer structure formation. Electrophoretic zeta (ξ) potential measurements indicated that the surface charge was either positive or negative, depending on the polyelectrolyte used (PDADMAC or PSS). ATR-IR spectra confirmed the successfully silanization process and then, the building up of the nanocomposite layer. Morphological investigation and X-ray reflectivity demonstrated the growth process and cross-section size of the bilayers. Ellipsometric measurements were in very good agreement with SEM and XRR, showing once again the successful deposition of polyelectrolyte multilayers.   相似文献   

18.
19.
In the present work, a new SiO2/TiO2/Ce, nanoparticle was synthesed using sol-gel method and evaluated as an adsorbent for preconcentration trace amounts of Pd(II) ions. The characterization of the nanoparticles has been studied by transmission electron microscope and X-ray diffraction. The preconcentration method is based on palladium adsorption onto the surface of nanoparticle at pH 8.5. The main factors affecting Pd(II) adsorption, such as pH of sample solution, concentration and volume of eluent, sample volume, interfering of the coexisting ions and flow rate of sample and eluent were investigated and optimized. At optimum conditions, linearity was maintained between 4.0 to 1000.0 ng mL?1. Detection limit based on 3Sb/m was 2.3 ng mL?1. Seven replicate determinations of a solution containing of 12.5 µg palladium gave a relative standard deviation ±1.7%. According to the Langmuir linear model, the maximum adsorption capacity of palladium was found to be 34.5 mg g?1. Finally, the feasibility of the proposed method for Pd(II) determination was assessed by analysis of certified reference materials, anodic slime and wastewater samples and satisfactory results were obtained.   相似文献   

20.
Formation of stable complexes between xenon and podand polyoxyethylene ligands was ascertained. The complexation process was studied by 129Xe NMR titration, NMR diffusiometry and heteronuclear NOE measurements. The ligands studied form a 1:1 complexes with Xe(0). Their stability constants depend on the ligand structure, i.e., polyoxyethylene chain length, number of complexating polyether units and the topology of the anchoring centre.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号