首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
鲁米诺-二甲亚砜-氢氧化钠体系化学发光机理的理论研究   总被引:1,自引:0,他引:1  
徐红  苏克和  车万锐  杨勇  陈新  文振翼 《化学学报》2006,64(19):1981-1987
用密度泛函理论(DFT) B3PW91/6-31G**方法研究了鲁米诺-二甲亚砜-氢氧化钠化学发光反应体系中反应物、中间体和产物的分子结构和振动频率, 用B3PW91/6-311+G(3df,2p)方法获得反应能量以及用时间相关(Time Dependent, TD)的B3PW91/6-311+G(3df, 2p)方法进行电子激发能态分析. 研究结果支持了下列化学发光反应通道: LH2(1A)+OH →LH2•OH(1A)→LH(1A)→L·-(2A)→TS1(3A)→LO22-(3A)→TS2(3A)→AP2-*(?3A)→AP2-(X3A)+, 最后即AP2-*回到基态发光; 或AP2-*(?3A)→AP2-*(?1A)→AP2-(a1A)+, 即激发态势能面交叉后的单重态跃迁发光. 它们在可见光区域主要有400~460和500~530 nm的强吸收谱带, 与实验结果符合. 研究还表明, 质子化的鲁米诺能量将大幅度降低, 说明酸性溶液导致鲁米诺的反应活性降低, 从理论上解释了鲁米诺化学发光体系的溶液须呈碱性, pH值影响发光反应的实验事实.  相似文献   

2.
采用UωB97X-D/6-311+G**方法, 研究了气相、 甲苯和水中OH自由基(·OH)引发CH3SSCH3自由基阳离子(CH3SSCH3?+, DMDS?+)裂解的反应机理, 并讨论了溶剂效应对反应的影响. 结果表明, ·OH和DMDS·+首先形成自由基耦合产物CH3S(OH)SCH3+(R1)和氢提取产物复合物[CH2=SSCH3+H2O]+(R2); 随后R1裂解直接发生 S—S键断裂协同质子转移, 而R2裂解依次发生构象变化、 C=S键亲碳加成和S—S键断裂协同质子转移. 去质子化的裂解产物为CH3SOH, CH2=S和HSCH2OH. 甲苯略微降低了裂解反应速控步骤的自由能垒. 水溶剂有利于R1裂解, 但不利于R2裂解, 尤其是单个水分子参与反应. 在气相、 甲苯和水中, 以·OH和DMDS·+为初始反应物, 虽然速控步骤的自由能垒为167.6~202.8 kJ/mol, 但裂解反应均是放热反应(?154.3~?31.4 kJ/mol).  相似文献   

3.
碳前驱体CH3ArCH2NH2热解反应的热力学和动力学DFT研究   总被引:2,自引:0,他引:2  
在实验研究基础上,通过量子化学理论计算对碳前驱体CH3ArCH2NH2的热裂解机理作了进一步的研究.利用Gaussian98程序包中AM1方法及DFTUB3LYP/3-21G*方法,对化合物5种可能热裂解路径的热力学和动力学计算结果表明,CH3ArCH2NH2热裂解的主反应路径为生成自由基CH3ArCH2*和NH2*,其主反应路径AM1计算的活化能Ea=230.78kJ/mol,DFT计算的活化能Ea=321.18kJ/mol;比较键焓计算的数据与相应的实验数据,发现DFT计算结果与实验结果吻合得较好;通过分析优化的反应物及产物自由基的部分结构参数,了解了理论支持主反应的原因;计算的产物自由基的空间构型表明主反应路径生成的产物自由基相互间若进行稠环缩合反应,将获得分子平面取向性很好的稠环芳烃产物.  相似文献   

4.
氟氯酰与丙烷反应的密度泛函理论研究   总被引:1,自引:0,他引:1  
应用密度泛函理论(DFT), 对氟氯酰(ClF3O)引发丙烷(C3H8)反应生成C3H7自由基或丙醇等产物的机理进行了研究. 在B3PW91/6-311++G(d,p)水平上优化了9个不同反应通道上各驻点物(反应物、中间体、过渡态和产物)的几何构型, 并计算了它们的振动频率和零点振动能. 通过零点能校正计算了各反应路径的活化能, 并应用过渡态理论计算了各反应路径常温下的速率常数k. 计算结果表明: ClF3O与C3H8反应可经过不同路径生成HF, C3H7自由基和C1F2O自由基或C3H7OH和ClF3. 其中, 最可几反应路径为ClF3O分子的中间位F原子进攻丙烷β位H原子的反应, 活化能仅为7.54 kJ/mol, 速率常数为0.153×106 mol-1•dm3•s-1.  相似文献   

5.
Ni原子活化氨分子理论研究   总被引:1,自引:0,他引:1  
谢均  秦松  唐典勇  胡常伟 《化学学报》2010,68(10):969-974
在UB3LYP/6-311++G(3df,3pd)水平下, 详细研究了Ni活化NH3分子的单重态和三重态势能面, 并用分子中的原子量子理论(Quantum Theory of Atom-in-Molecular, QTAIM)计算了势能面上所有驻点的性质. 计算结果表明, 单重态势能面有两条反应途径, 而三重态势能面仅有一条反应途径. 第一个N—H断开的活化能较低, 为99.96 kJ/mol, 活化自由能为100.86 kJ/mol,在常温下就可以进行; 第二个N—H键断裂所需能量高达200 kJ/mol, 不容易进行. 在合适温度下, Ni可以活化NH3得到三重态HNiNH2, 这表明Ni可以作为活化NH3分子的良好催化剂.  相似文献   

6.
采用CCSD(T)/6-311+G(2df)//B3LYP/6-311+G(d)方法, 系统研究了B4O体系各个异构体的结构和能量, 以及重要异构体的解离和异构化稳定性. 结果表明, 单态平面三角形含-BO单元的异构体cB3-BO 11能量最低, 其次是带状的异构体B4O 12(10.9 kJ/mol), 并且11和12结构都具有良好的动力学稳定性. 因此对于B4O体系, 11和12都是有可能存在的. 而文献报道的三态直线型结构BBBBO(146.0 kJ/mol)的能量比异构体11和12高得多.  相似文献   

7.
研究了基于2,3-丁二酮双缩氨基硫脲为中性载体的聚氯乙烯(PVC)膜电极, 该电极对银离子(Ag)具有优良的电位响应性能. 在pH=3.0的NaOH-HNO3体系中, 该电极对Ag电极电位呈现近能斯特响应, 线性响应范围为3.0×10-6~1.0×10-2 mol/L, 斜率为52.6 mV/decade (20 ℃), 检测下限为1.0×10-6 mol/L. 相对于常见的阳离子, 该电极对Ag表现出良好的选择性. 采用交流阻抗技术研究了电极响应机理, 并将电极初步应用于回收率实验, 结果令人满意.  相似文献   

8.
采用CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p)+ZPVE方法对反应O+HCNO进行了研究. 通过反应势能面揭示了该反应的机理, 通过H或O迁移等多步反应路径得到3种产物, 其中, P1(HCO+NO)为主要产物, P2(HNO+CO)和P3(NCO+OH)为次要产物. 为进一步实验研究提供了参考.  相似文献   

9.
苯的硝基和叠氮基衍生物的理论研究   总被引:2,自引:0,他引:2  
在密度泛函理论B3LYP/6-31G*水平下优化了91个苯的硝基(NO2)和叠氮基(N3)衍生物的分子几何构型, 预测了它们的密度和生成热, 采用Kamlet-Jacobs方法计算了爆速和爆压, 筛选得到11种爆轰性能较好的高能量密度化合物(HEDC), 计算了它们的多个可能的热解引发键的键离解能(BDE)以及按“氧化呋咱机理”分解时的活化能(Ea). 结果表明, 当分子中有NO2与N3相邻时, 分解按“氧化呋咱机理”进行, 分解反应的Ea均大于100 kJ/mol|分子中没有NO2和N3相邻时, 热解始于C-NO2或C-N3均裂, 裂解的BDE都大于200 kJ/mol. 只含NO2或N3的7个物质的稳定性好于同时含NO2和N3的物质, 而只含N3的物质的稳定性又好于只含NO2的物质, 五叠氮苯和六叠氮苯具有很出色的爆轰性能和稳定性. 无论是能量还是稳定性方面, 筛选得到的11种物质基本符合HEDC的要求.  相似文献   

10.
PdYH分子的结构与势能函数   总被引:8,自引:1,他引:7  
倪羽  蒋刚  朱正和  孙颖 《化学学报》2005,63(8):764-768
用密度泛函理论的B3LYP方法, 对钯和钇原子采用SDD收缩价基函数, 氢原子采用6-311++G**全电子基函数, 对PdY和PdYH体系的结构进行优化. 计算表明: PdY分子的几何构型为Cv, 其基态为X2Σ态, 键长R=0.24168 nm, 离解能为De=2.8261 eV, 谐振频率ωe=254.0656 cm-1, 并拟合得到Murrell-Sorbie势能函数; PdYH分子最稳态为Cs构型, 电子组态为1A', 平衡核间距RPdY=0.24281 nm, RYH=0.19824 nm, 键角∠PdYH=116.7157°, 离解能De=5.6146 eV, 基态简正振动频率: 对称伸缩振动频率ν1 (a')=348.2909 cm-1, 弯曲振动频率ν2 (a')=243.3382 cm-1, 反对称伸缩振动频率ν3 (a')=1442.2695 cm-1. 由微观过程的可逆性原理分析了分子的可能离解极限. 并用多体项展式理论方法分别导出基态PdY和PdYH分子的势能函数, 其等值势能面图准确地再现了PdY和PdYH分子的结构特征和离解能, 由此讨论了Pd+Y+H分子反应的势能面静态特征.  相似文献   

11.
Summary The geometric isomerization and the dehydrogenation of HP=PH in the ground and some low-lying excited states are investigated by theoretical calculations. The reaction paths are traced by either the CASSCF or UHF-SCF calculations using the 6-31G(d,p) basis functions, and the accompanying energy changes are calculated by the MRD-CI method employing the [5s3p1d]/[2s1p] basis functions. The barrier heights for the trans-to-cis isomerization, by the planar inversion and the nonplanar twisting, in the ground state are calculated to be 265 and 144 kJ/mol (with the vibrational zero-point energy corrections), respectively. The latter barrier is noticeably lower than the H-P and the P-P bond dissociation energies oftrans-HP=PH (1Ag), which are 304 and 271 kJ/mol, respectively. The ground-state HP2 radical (2A'), which is to be formed by the dehydrogenation of HP=PH, should suffer further decomposition into P2 (1 g + ) and H with an activation energy of 139 kJ/mol. The lowest excited state of HP2 is found to be a hydrogen-bridged 3-electron system (2A2) having an isosceles triangle structure. It has proved to be formed by the dehydrogenation of the lowest excited singlet state (1B) of HP=PH via a transition state which lies 194 kJ/mol above the1B state. The excited HP2 (2A2) is state-correlated with P2 (3u)+H.  相似文献   

12.
郝兰  王艳  陈光巨 《化学学报》2008,66(9):1028-1036
采用固体镶嵌势能模型和DFT/B3LYP方法研究了在Pd/MgO和Cu/MgO表面吸附CO和O2分子的电子性质. 计算结果表明, 在完美MgO(100)表面Pd原子对CO和O2的吸附能分别为206.5和84.8 kJ/mol, 因此可知Pd原子更容易吸附CO分子; 而当Pd原子附着于有氧缺陷的MgO表面时, 它对两种分子的吸附都非常弱. 相反, 附着于MgO表面的Cu原子对O2分子的吸附更为有利, 其吸附能在140~155 kJ/mol之间. 研究结果还表明, 对于双分子吸附体系, 即CO+CO, CO+O2, O2+O2体系, 双分子之间的结合力可减小完美MgO表面上Pd原子与被吸附分子的相互作用, 使吸附能减少了46~96 kJ/mol. 而对于在MgO表面上的Cu原子, 只有O2+O2 体系使吸附能减少了大约50~71 kJ/mol.  相似文献   

13.
Energetic H atoms produced by photolysis of gaseous HI react with CD3Br by D abstraction (1) and Br abstraction (2) and possibly also by the substitution reactions (4) and (5). Yields of HD and CD3H have been determined for several defined initial translational energies of H*. The phenomenological threshold energy of reaction (1) is 53 ± 5 kJ/mol. Over the range of initial energies of 76–109 kJ mol the integral probability of reaction (1) increases substantially, but the sum of the integral probabilities of reactions (2) and (5) shows little change. The ratio of the sum of the integral yields of reactions (2) and (5) to the integral yield of reaction (1), when normalized to equal numbers of Br and D atoms, is 69 ± 33 at an initial energy of 76 kJ/mol and 31 ± 6 at 109 kJ/mol.  相似文献   

14.
Results obtained from the photolysis of ketene with acetylene strongly support the formation of C3H3 radicals in the title reaction. Stationary state studies are interpreted in terms of the reaction with a rate constant (109.8 s?1) which is compared to RRKM predictions. In pulsed laser induced decomposition experiments, recombination products involving C3H3 have been detected (some for the first time) and their formation modeled using step (3) with the same rate constant.  相似文献   

15.
A DFT quantum-chemical study of NO adsorption and reactivity on the Cu20 and Cu16 metal clusters showed that only the molecular form of NO is stabilized on the copper surface. The heat of monomolecular adsorption was calculated to be ΔH m = ?49.9 kJ/mol, while dissociative adsorption of NO is energetically unfavorable, ΔH d = + 15.7 kJ/mol, and dissociation demands a very high activation energy, E a = + 125.4 kJ/mol. Because of the absence of NO dissociation on the copper surface, the formation mechanism of the reduction products, N2 and N2O, is debatable since the surface reaction ultimately leads to N-O bond cleavage. As the reaction occurs with a very low activation energy, E a = 7.3 kJ/mol, interpretation of the NO direct reduction mechanism is both an important and intriguing problem because the binding energy in the NO molecule is high (630 kJ/mol) and the experimental studies revealed only physically adsorbed forms on the copper surface. It was found that the formation mechanism of the N2 and N2O reduction products involves formation (on the copper surface) of the (OadN-NOad) dimer intermediate that is chemisorbed via the oxygen atoms and characterized by a stable N-N bond (r N-N ~1.3 Å). The N-N binding between the adsorbed NO molecules occurs through electron-accepting interaction between the oxygen atoms in NO and the metal atoms on the “defective” copper surface. The electronic structure of the (OadN-NOad) surface dimer is characterized by excess electron density (ON-NO)δ? and high reactivity in N-Oad bond dissociation. The calculated activation energy of the destruction of the chemisorbed intermediate (OadN-NOad) is very low (E a = 5–10 kJ/mol), which shows that it is kinetically unstable against the instantaneous release of the N2 and N2O reduction products into the gas phase and cannot be identified by modern experimental methods of metal surface studies. At the same time, on the MgO surface and in the individual (Ph3P)2Pt(O2N2) complex, a stable (OadN-NOad) dimer was revealed experimentally.  相似文献   

16.
Photolysis (193 nm) of propiolic acid (HCCCOOH) was studied with Fourier transform infrared spectroscopy in noble-gas (Ar, Kr, and Xe) solid matrixes. The photolysis products were assigned using ab initio quantum chemistry calculations. The novel higher-energy conformer of propiolic acid was efficiently formed upon UV irradiation, and it decayed back to the ground-state conformer on a time scale of approximately 10 min by tunneling of the hydrogen atom through the torsional energy barrier. In addition, the photolysis produced a number of matrix-isolated 1:1 molecular complexes such as HCCH...CO2, HCCOH...CO, and H2O...C3O. The HCCH...CO2 complex dominated among the photolysis products, and the computations suggested a parallel geometry of this complex characterized by an interaction energy of -9.6 kJ/mol. The HCCOH...CO complex also formed efficiently, but its concentration was strongly limited by its light-induced decomposition. In this complex, the most probable geometry was found to feature the interaction of carbon monoxide with the OH group via the carbon atom, and the computational interaction energy was determined to be -18.3 kJ/mol. The formation of the strong H2O...C3O complex (interaction energy -21 kJ/mol) was less efficient, which might be due to the inefficiency of the involved radical reaction.  相似文献   

17.
CCSD(T) calculations have been used for identically nucleophilic substitution reactions on N‐haloammonium cation, X? + NH3X+ (X = F, Cl, Br, and I), with comparison of classic anionic SN2 reactions, X? + CH3X. The described SN2 reactions are characterized to a double curve potential, and separated charged reactants proceed to form transition state through a stronger complexation and a charge neutralization process. For title reactions X? + NH3X+, charge distributions, geometries, energy barriers, and their correlations have been investigated. Central barriers ΔE for X? + NH3X+ are found to be lower and lie within a relatively narrow range, decreasing in the following order: Cl (21.1 kJ/mol) > F (19.7 kJ/mol) > Br (10.9 kJ/mol) > I (9.1 kJ/mol). The overall barriers ΔE relative to the reactants are negative for all halogens: ?626.0 kJ/mol (F), ?494.1 kJ/mol (Cl), ?484.9 kJ/mol (Br), and ?458.5 kJ/mol (I). Stability energies of the ion–ion complexes ΔEcomp decrease in the order F (645.6 kJ/mol) > Cl (515.2 kJ/mol) > Br (495.8 kJ/mol) > I (467.6 kJ/mol), and are found to correlate well with halogen Mulliken electronegativities (R2 = 0.972) and proton affinity of halogen anions X? (R2 = 0.996). Based on polarizable continuum model, solvent effects have investigated, which indicates solvents, especially polar and protic solvents lower the complexation energy dramatically, due to dually solvated reactant ions, and even character of double well potential in reactions X? + CH3X has disappeared. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
Quantitative analysis of the products formed in 1,1′-azoisobutane pyrolyses in the temperature range of 553°–602°K has shown that the major reactions of the iso-butyl radical are Analysis of initial rate data gave log10k4/(kc)1/2(cm?3/2.mol 1/2.sec?1/2) = 7.54±0.44 ? (136.5 + 4.8) kJ/mol/2.303RT, the Arrhenius parameters obtained being in good agreement with thermodynamic data for reaction (4). Measured values of ka/(kc)1/2 where ka is the rate constant of the reaction iC4H9 + AIB → iC4H10 +. AIB were consistent with published parameters determined by photolysis of 1,1′-azoisobutane. Combination of photolysis and pyrolysis data gave log10 ka/(kc)1/2(cm3/2.mol?1/22.sec?1/2) = 3.68 ± 0.15 ? (27.2 ± 1.2) kJ/mol/2.303RT. The crosscombination ratio for methyl and iso-butyl radicals has been found to be 0.25, indicating that the geometric mean rule does not hold for methyl and iso-butyl radicals.  相似文献   

19.
Hydration reactions of protonated and sodiated thiouracils (2-thiouracil, 6-methyl-2-thiouracil, and 4-thiouracil) generated by electrospray ionization have been studied in a gas phase at 10 mbar using a pulsed ion-beam high-pressure mass spectrometer. The thermochemical data, ΔH o n, ΔS o n, and ΔG o n, for the hydrated systems were obtained by equilibrium measurements. The water binding energies of protonated thiouracils, [2SU]H+ and [6Me2SU]H+, were found to be of the order of 51 kJ/mol for the first, and 46 kJ/mol for the second water molecule. For [4SU]H+, these values are 3–4 kJ/mol lower. For sodiated complexes, these energies are similar for all studied systems, and varied between 62 and 68 kJ/mol for the first and between 48 and 51 kJ/mol for the second water molecule. The structural aspects of the precursors for hydrated complexes are discussed in conjunction with available literature data. Graphical Abstract
?  相似文献   

20.
The product branching ratio of the HCCO + NO reaction was investigated using the laser photolysis/infrared absorption technique. Ethyl ethynyl ether (C(2)H(5)OCCH) was used as the HCCO radical precursor. Transient infrared detection of CO, CO(2), and HCNO products was used to determine the following branching ratios at 296 K: phi(CO+HCNO) = 0.78 +/- 0.04 and phi(CO(2)+HCN) = 0.22 +/- 0.04. These values are in good agreement with some recent ab initio calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号