首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, novel bio-based hydroxyl-end-capped (co)polyesters from dimethyl-2,5-furandicarboxylate (DMF), 2,3-butanediol, and a variety of comonomers viz. glycerol, pentaerythritol or trimethylolpropane are prepared using a solvent-free, bulk polycondensation technique. Extensive molecular and thermal characterization was performed to elucidate the properties of these materials. The materials showed suitable properties for solvent-borne coating applications in terms of their molecular weight, functionality and thermal characteristics, and coatings were prepared using the isocyanurate of hexamethylene diisocyanate as a cross-linker. The resulting coatings, having thicknesses between 30 and 55 μm, were hard but rather brittle. All the coatings have good solvent resistance, pointing to sufficient network formation. It is clear that the presented DMF-based polyesters show promise as bio-based coating resins.  相似文献   

2.
Four saturated polyesters poly(hexamethylene adipate), poly(ethylene adipate), poly(hexamethylene terephthalate) and poly(ethylene terephthalate) were prepared. The resulting materials were characterized by IR and 1H NMR, end group analysis and gel permeation chromatography. The effect of blending these polyesters (5 and 10%) with poly(vinyl chloride) (PVC) in the melt was investigated in terms of changes in the thermal behaviour of PVC by studying the weight loss after 50 min at 180 °C, colour changes of the blend before and after aging for one week at 90 °C, the variation in glass transition temperature and the initial decomposition temperature. The results gave proof for the stabilizing role played by the investigated polyesters against the thermal degradation of PVC. The best results are obtained when PVC is mixed with 5% aliphatic polyesters rather than with aromatic ones. This is well illustrated not only from the increase in the initial decomposition temperature (IDT), but also from the decrease of % weight loss and from the lower extent of discolouration of PVC, which is a demand for the application of the polymer. It was also found that blending PVC with 5% of the four investigated polyesters before and after aging for one week at 90 °C gave better mechanical properties even than that of the unaged PVC blank.  相似文献   

3.
Results are given for the mechanical, thermal and flammability properties of polyisocyanurate resins obtained from hexamethylene diisocyanate by bis-(tributyltin)-oxide catalysis. It is shown that the mechanical properties of the isocyanurate resins and of their glass fibre-reinforced composites are comparable with those of commercial epoxy and polyester resins. The thermal stability and the flame retardance of the isocyanurate resins are far better than of epoxies or polyesters.  相似文献   

4.
Li  Ning  Zeng  Fang-Lei  Wang  Yu  Qu  De-Zhi  Zhang  Chun  Li  Juan  Huo  Jin-Zhao  Bai  Yong-Ping 《高分子科学》2018,36(1):85-97
In this study, two fluorinated polyurethanes(FPU) containing carborane groups in the main chains were firstly designed and synthesized via the reaction of hexamethylene diisocyanate trimer(HDI trimer) with fluorinated polyesters(CFPETs) having hydroxyl-terminated carborane groups at room temperature. The structures of carborane fluorinated polyesters(CFPETs) and polyurethanes(CFPUs) were characterized by gel permeation chromatography(GPC), Fourier transform infrared(FTIR) spectroscopy and nuclear magnetic resonance(NMR) measurements. The thermal stability, mechanical properties, Shore A hardness, solvent resistance and acid-alkali resistance of the carborane fluorinated polyurethane films were also studied. Thermogravimetric analysis(TGA) tests manifested that the introduction of carborane groups into the main chain of fluorinated polyurethane endowed the obtained fluorinated polyurethane with excellent thermal stability. The thermal decomposition temperature of carborane fluorinated polyurethane(CFPU) increased by 190 °C compared with that of the carborane-free fluorinated polyurethane(FPU). Even at 800 °C, CFPU showed the char yield of 66.5%, which was higher than that of FPU(34.3%). The carborane-containing fluorinated polyurethanes also showed excellent chemical resistance and prominent mechanical property even after the cured films being immersed into Jet aircraft oil or 37% HCl for 168 h or at high temperature(700 °C). It is found that the structural characteristics of carborane group and the compacted structure of CFPU effectively improve the thermal stability, mechanical property, solvent resistance and acid-alkali resistance of the carborane-free fluorinated polyurethane. These excellent properties make CFPU as the useful raw materials to prepare the high temperature resistant coatings or adhesives for automotive engines, engine or fuel tank of aircraft and other equipment working in high-temperature or high concentrations of acid-alkali environments.  相似文献   

5.
将氯化铜加入到紫精/聚乙烯吡咯烷酮中,制得了一种可快速褪色、光疲劳性能优异的紫精/聚合物光致变色薄膜,测试了该薄膜的变色性能、褪色性能及光疲劳性能.结果表明,氯化铜的加入使薄膜初次紫外光照时的颜色变浅,但加快了薄膜褪色;当氯化铜与紫精摩尔比为1:1、60℃褪色时,薄膜光照后在610 nm处吸光度的半衰期为9 min,而不合氯化铜的薄膜为54 min,氯化铜含量越高,半衰期越短.含有氯化铜的薄膜,随变色/褪色循环次数增加,光照后的显色加深,氯化铜含量越高,颜色增加的程度越大.该功能薄膜可用于信息存储、太阳镜及智能窗等方面.  相似文献   

6.
2,2′-(1,4-Phenylenedivinylene)bis-5-hydroxypyridine (PBHP) was used as a starting material for preparing new polyesters and polyurethanes as well as a diepoxide-bearing styrylpyridine segments. The diesters were prepared by reacting PBHP with terephthaloyl or adipoyl dichloride utilizing the interfacial polycondensation method. The diesters were prepared from the reaction of PBHP with tolylene diisocyanate or methylenebis(4-phenylisocyanate). In addition, a model diester and diurethane were synthesized by reacting PBHP with benzoyl chloride and phenyl isocyanate, respectively. Both model compounds and polymers were characterized by IR and 1H-NMR spectroscopy, as well as by DTA and TGA. A diepoxide was also prepared from the reaction of PBHP with epichlorohydrin which was polymerized in the presence of 4,4′-diaminodiphenylsulfone. The polyester derived from PBHP and terephthaloyl dichloride was the most thermostable polymer obtained. It was stable in N2 up to 355°C and afforded an anaerobic char yield of 59% at 800°C. The thermal stabilities of polymers were improved by curing.  相似文献   

7.
A series of halogen-containing poly (esterurethane)s was synthesized from the prepolymers, i.e., hydroxy-terminated polyesters containing chlorine and fluorine and the diisocyanates such as toluene diisocyanate (TDI) and hexamethylene diisocyanate (HMDI). Polyesterification of halogenated phthalic anhydride with an excess of diols such as ethylene glycol, 1,2-propanediol, and 1,4-butanediol in the presence of trifluoroacetic anhydride (TFAA) was carried out to prepare prepolymers. The prepolymers and the poly (esterurethane)s were characterized by infrared (IR), 1H nuclear magnetic resonance (NMR), viscosity, end-group analysis, solubility and thermal analysis namely thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Kinetics of thermal degradation was also studied. Resistance of the polymers to alkaline agents and combustion was also tested.  相似文献   

8.
The utilization of microwave energy in polymer synthesis is a fast growing field of research leading to a more rapid and cleaner polymerization process. In order to synthesize novel optically active monomer 5‐(4‐methyl‐2‐phthalimidylpentanoylamino)isophthalic acid ( 6 ), the reaction of phthalic anhydride with l ‐leucine was carried out in an acetic acid solution and 4‐methyl‐2‐phthalimidylpentanoic acid as an imide acid was obtained in good yield. Then, it was converted to 4‐methyl‐2‐phthalimidylpentanoyl chloride by treatment with thionyl chloride. This acid chloride was reacted with 5‐aminoisophthalic acid and the novel bulky aromatic amide‐imide chiral monomer 6 was obtained in high yield and was characterized with spectroscopy techniques as well as specific rotation and elemental analysis. Polycondensation of monomer 6 with different diisocyanates such as 4,4′‐methylenebis(phenyl isocyanate), toluene‐2,4‐diisocyanate, isophorone diisocyanate, and hexamethylene diisocyanate was performed by two different methods: microwave irradiation and classical heating polymerization techniques in the presence of various catalysts and without a catalyst. The microwave polymerization technique provides a new way for the production of polymers at high rates. The resulting novel optically active polyamides have inherent viscosities in the range of 0.25–0.63 dl/g. They show good thermal stability and are soluble in amide‐type solvents. The obtained polyamides were characterized by FT‐IR, 1H‐NMR spectroscopy, elemental analyses, specific rotation, and thermal analyses methods. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
A series of aromatic polyesters has been prepared by low-temperature solution polycondensation of derivatives of dihydroxydinaphthyl or dihydroxydinaphthylmethane with terephthaloyl chloride. The chemical, physical, and thermal properties of some polyesters have been investigated. Some of the polyesters obtained have high melting temperatures (340–420°C) and very good thermal resistance. In spite of their high melting temperatures some polymers give solutions in organic solvents which make it possible to produce films and coatings with good dielectric and mechanical properties and with a relatively high thermal resistance.  相似文献   

10.
5-(3-Methyl-2-phthalimidylpentanoylamino)isophthalic acid as a novel aromatic diacid monomer was prepared in three steps. In the first step, phthalic anhydride was reacted with l-isoleucine in acetic acid solution, and the resulting imide acid was obtained in high yield. In the second step, treatment of this imide acid with excess thionyl chloride gave aliphatic acid chloride in good yield. In the last step, this acid chloride was reacted with 5-aminoisophthalic acid to provide novel bulky chiral aromatic diacid monomer. The direct polycondensation reactions of this diacid with several aromatic and aliphatic diisocyanates such as 4,4′-methylenebis(phenyl isocyanate), toluylene-2,4-diisocyanate, isophorone diisocyanate and hexamethylene diisocyanate were carried out under microwave irradiation. In order to compare this method with classical heating, the polymerization reactions were also performed under solution polycondensation conditions. The polymerization reactions occurred rapidly under microwave conditions and produced a series of novel optically active polyamides (PA)s containing pendent phthalimide group, with good yields and moderate inherent viscosities of 0.17-0.60 dL/g. Some of the new PAs showed good solubility and are readily soluble in organic solvents. The resulting macromolecules were characterized by FT-IR, specific rotation, and representative ones by 1H NMR, elemental and thermogravimetric analyses (TGA).  相似文献   

11.
The thermoreversible gelation of Pluronic [poly(ethylene oxide) (PEO)–polypropylene oxide (PPO)–PEO] aqueous solutions originates from micelle formation and micelle volume changes due to PEO–water and PPO–water lower critical solution temperature behavior. The micelle volume fraction is known to dominate the sol–gel transition behavior of Pluronic aqueous solutions. Triblock copolymers of PEO and aliphatic polyesters, instead of PPO, were prepared by hexamethylene diisocyanate coupling and dicyclohexyl carbodiimide coupling. Through changes in the molecular weight and hydrophobicity of the polyester middle block, the hydrophobic–hydrophilic balance of each block was systematically controlled. The following aliphatic polyesters were used: poly(hexamethylene adipate) (PHA), poly(ethylene adipate) (PEA), and poly(ethylene succinate) (PESc). With the hydrophobicity and molecular weight of the middle block increasing, the critical micelle concentration at the same critical micelle temperature decreased, and the absolute value of the micellization free energy increased. The micelle size was rather insensitive to temperature but slightly decreased with increasing temperature. PEO–PHA–PEO and PEO–PEA–PEO triblock copolymers needed high polymer concentrations to form gels. This was ascribed to the tight aggregation of PHA and PEA chains in the micelle core due to strong hydrophobic interactions, which induced the contraction of the micelle core. However, because of the relatively hydrophilic core, a PEO–PESc–PEO aqueous solution showed gelation at a low polymer concentration. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 772–784, 2004  相似文献   

12.
Siwei Liu  Yi Zhang  Jiarui Xu 《中国化学》2011,29(5):1036-1040
A series of polyureas were synthesized through the reaction of aniline trimer with toluene‐diisocyanate, diphenylmethane‐4,4′‐diisocyanate, and hexamethylene‐1,6‐diisocyanate, respectively. The chemical structure of these polyureas was characterized and verified by FT‐IR, 1H NMR, elemental analysis, UV, XRD and CV. The conductivity of these polyureas ranged from 10?7 to 10?6 S/cm measured by four‐point‐probe instrument. Compared to the standalone aniline trimer, the stability (thermal stability and electrochemical stability), response range and sensitivity of these polyureas are enhanced. The sensitivity of these polyureas DMF solution to pH value is superior to that of the standalone aniline trimer. The color of the polyureas DMF solution is greatly depended on pH value and the color change process is reversible, whenever from base to acid or from acid to base. These enhancements may give these polyureas more opportunities in order to be used as sensor materials.  相似文献   

13.
New polyesters and polyurethanes as well as diepoxides bearing styrylpyridine segments were prepared utilizing 2,2′-(1,4-phenylenedivinylene)bis-8-hydroxyquinaldine (PBHQ) and 6-(4-hydroxystyryl)-3-hydroxypyridine (HSHP) as starting materials. The polyesters were prepared by reacting PBHQ or HSHP with terephthaloyl dichloride in the presence of an acid acceptor utilizing the solution polycondensation method. The polyurethanes were prepared from the reactions of PBHQ and HSHP with tolylene diisocyanate and methylenebis(4-phenylisocyanate). In addition, model diesters and diurethanes were synthesized by reacting PBHQ and HSHP with benzoyl chloride and phenyl isocyanate, respectively. Model compounds and polymers were characterized by FT-IR and 1H-NMR spectroscopy as well as by DTA and TGA. Diepoxides were also prepared from the reactions of PBHQ and HSHP with epichlorohydrin which were polymerized in the presence of 4,4′-diaminodiphenylsulfone. The polyesters were the most thermostable polymers obtained. After curing at 240°C for 20 h, they were stable in N2 up to 345–370°C and afforded anaerobic char yields of 65–75% at 800°C. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
一类可纺丝的全芳香热致性液晶共聚酯的合成和表征   总被引:2,自引:0,他引:2  
利用Higashi芳香聚酯直接缩聚法的原理 ,采用一步混合投料直接缩聚的方法 ,以对羟基苯甲酸(PHB)、间苯二甲酸 (MPA)、4 ,4′ 二羟基二苯酮 (DHBP)和对苯二酚 (HQ)为单体原料 ,合成了全芳香共聚酯 .该合成方法反应条件温和 ,简单易控 ,产物分子量高 .用差热分析 (DSC)、热重分析 (TA)、偏光显微镜 (PLM)、广角X 射线衍射 (WAXD)等测试分析手段对共聚酯的热性能和液晶特性进行了表征 .研究结果表明 ,利用此方法合成所得的聚合物呈明显的向列型热致液晶特性 ,热稳定性高 ,并具有极易成纤的特点 ,有望成为一种可用于纺丝的全芳香热致液晶共聚酯材料  相似文献   

15.
In order to prepare tough polyurethane (PU) electrical insulator with improved thermal stability and electrical insulating properties, high molecular weight polybenzoxazine precursor was mixed and co‐cured with crosslinkable urethane prepolymers. Polybenzoxazine precursor (Bmda) was synthesized from reaction of bisphenol‐A, methylenedianiline, and paraformaldehyde. Epoxy‐terminated polyurethanes (EPU1‐4) were prepared by the reaction of glycidol with NCO‐terminated urethane oligomers. The oligomers were prepared from different molecular weight versions of polycaprolactone polyol (CAPA) and hexamethylene diisocyanate. Blends were prepared through thermal treatment of equal weights of two precursors dissolved in chloroform. Optimum curing condition was determined by DSC and DMTA analysis and measurement of the gel content for cured samples. Viscoelastic, thermal, mechanical, and electrical properties of cured samples were investigated and structure–property relationship was established. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A series of predominately hydroxyl-ended polyesters were made from tridecanedioic acid derived from crambe oil. Comparison materials with sebacic and adipic acids were also prepared. Suitable polyesters were converted into polyurethane elastomers by chain extension and cross-linking with a diisocyanate and further diol. Polyesters based on ethandiol were unsuitable for the production of flexible urethanes as a slow crystallization occurred on standing; this did not happen when mixed ethane- and propan-diols were employed in polyesterification. Polyurethanes based on diphenylmethane diisocyanate are stronger than those made with the mixed isomers of toluene diisocyanate. Polyurethane networks based on brassylic acid have a lower  相似文献   

17.
A polycarbosilane having lactose‐derived structures was synthesized, and its thermal property, cytotoxicity, chemical crosslinking, and protein adsorption properties were investigated. The polycarbosilane (PSB‐Lac) was prepared by a thiol‐ene reaction between precursor poly(1‐(3‐butenyl)‐1‐methylsilacyclubane) (PSB) and heptaacetyl lactose that carried a thiol group at the anomeric position, and the successive deprotection of the acetyl groups. The lactose introduction efficiency determined by 1H NMR measurement was 75%. TGA and DSC revealed that the polymer had a 5 wt% decomposition temperature of 260 °C and glass transition temperature (Tg) of 84 °C, which indicated that PSB‐Lac was a thermally stable polymer. PSB‐Lac had no significant cytotoxicity, which was evaluated by human liver cancer cell line HepG2 cultivation on the polystyrene dishes coated with the polymer. Urethane‐crosslinked PSB‐Lac films were prepared by casting solutions of PSB‐Lac and hexamethylene diisocyanate and heating at 120 °C after evaporation of the solvent. The crosslinked PSB‐Lac showed higher adsorption of bovine serum albumin than the similarly crosslinked polycarbosilane that had a glucose structure (PSB‐Glc). © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2420–2425  相似文献   

18.
Three bisphenols containing cardo perhydrocumyl cyclohexylidene group, namely; 1,1-bis(4-hydroxyphenyl)-4-perhydrocumylcyclohexane, 1,1-bis(4-hydroxy-3-methylphenyl)-4-perhydrocumylcyclohexane and 1,1-bis(4-hydroxy-3,5-dimethylphenyl)-4-perhydrocumylcyclohexane were synthesized starting from p-cumyl phenol. Each of these bisphenols was polycondensed with both terephthaloyl chloride and isophthaloyl chloride by phase transfer-catalyzed interfacial polymerization to obtain a series of new aromatic polyesters. Inherent viscosities and number average molecular weights of polyesters were in the range 0.51-0.64 dL/g and 17390-41430?g/mol, respectively which indicated the formation of reasonably high molecular weight polymers. The detailed NMR studies revealed that axial and equatorial identity of the phenyl rings of bisphenols was retained in polyesters resulting in constitutional isomerism. Polyesters containing perhydrocumyl cyclohexylidene groups showed excellent solubility in organic solvents viz, chloroform, dichloromethane, 1,1,2,2-tetrachloroethane and tetrahydrofuran. The self-standing films of polyesters could be cast from their chloroform solution. The 10% weight loss temperatures and glass transition temperatures of polyesters were in the range 453–485?°C and 201–267?°C, respectively demonstrating their excellent thermal characteristics. The gas permeability study of polyesters was carried out for He, H2 and N2 by variable-volume method. An improvement in permeability and decrease in selectivity was observed due to symmetric methyl substituents while reverse trend was observed in case of polyesters with asymmetric methyl substituents.  相似文献   

19.
The thermal responses of various polyurethane elastomers in the form of changes in heat capacity, linear expansion, and tensile strain have been examined. Most of the change which can be attributed to the backbone of polyethylene adipate, found in several modes of thermal analysis, are still apparent, though shifted somewhat, among most of the diisocyanate extended elastomers used in this study. Tolylene diisocyanate extension changes the modulus properties markedly, low modulus properties being observed at ambient temperatures. Both hydrogenated MDI and MDI elastomers show comparable expansion and modulus response, whereas the hydrogenated TDI elastomer does not have the same characteristics as TDI-based elastomers. The thermal properties of the hydrogenated TDI elastomer resemble more those exhibited by the polyol mixture extended with hexamethylene diisocyanate, and in addition this latter elastomer exhibits more crystallinity, as shown by the large endotherm in the specific heat measurement. The structure of the diisocyanate naturally changes the behavior of the hard segment.  相似文献   

20.
Polyurethane (PU) ionomers were prepared from trimellitic anhydride (TMA), poly(tetramethylene adipate) glycol (PTAd), and hexamethylene diisocyanate (HDI) in acetone. Upon neutralizing the carboxylic groups with a tertiary amine (TEA), and adding water to PU ionomer solution, followed by removing the acetone, stable aqueous PU dispersions were obtained.Effects of interionic molecular weight and nonionic hydrophilic segment, viz. monofunctional ethylene-propylene oxide ether on particle, size, emulsion viscosity, mechanical, and viscoelastic properties of the emulsion cast films were examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号