首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
An effective nanocomposite sensor for selective electroanalytical dopamine (DA) determination using overoxidized conducting polymer of poly-1,5-diaminonaphthalene (OPoly-1,5-DAN) functionalized graphene nanosheets (GNS) was achieved. The OPoly-1,5-DAN/GNS nanocomposite polymer was prepared via an electropolymerization of 1,5-DAN on GNS/GCE after 7 cycles of potential scan (−0.2 V to +0.9 V), followed by an electrooveroxidation of the nanocomposite Poly-1,5-DAN/GNS by the potential cycle (0.0 V to +1.8 V) for 2 scans. The OPoly-1,5-DAN was effectively designed by GNS as a uniformly distribution of nanocomposite that caused more accumulations of analyte due to large electrocatalytic active positions created on electrode surface. The high specific and sensitive performance of the OPoly-1,5-DAN/GNS nanocomposite polymer was conducted to greater effective electrons transferring behavior for DA with copresent of vitamin C (VC). The stable and suitable formation of OPoly-1,5-DAN/GNS nanocomposite polymer showed rapid charge transport voltammogram and obvious electrocatalytic activity to DA and eliminated VC response. Moreover, the OPoly-1,5-DAN/GNS displays an excellent responses to DA determination with wide linear range (LR) 1.0–150 μM and lower detection limit (DL) 8.82±0.1 nM as comparing with other studies. Additionally, the excellent reproducibility of OPoly-1,5-DAN/GNS as well as long-term stability indicated that it is an excellent and effective electrochemical DA sensor. Finally, the electroanalytical application of the OPoly-1,5-DAN/GNS nanocomposite polymer was employed for the electroanalysis of DA in human urine.  相似文献   

2.
Graphene nanoscrolls (GNS), one‐dimensional carbon‐based nanomaterials, have been predicted to possess extraordinary characteristics due to their unique open topology with scrolled graphene monolayers. In this study, the conversion of planar 2‐D graphene nanoplatelets (GNPs) to tubular and scrolled 1‐D GNSs is described. The effects of GNS as a nucleating agent to modulate the morphology, crystallization, and nano‐mechanical properties of polylactic acid (PLA) were studied. The nucleating effect of GNS and its unique topological characteristics proves to influence the crystallization of PLA. Fourier transform infrared (FTIR) spectroscopy indicated nonpreferential interactions of PLA chains around GNS due to the bulky and helical PLA macromolecular chains. Superior interfacial interactions and strain in GNS provide better load transfer between GNS and PLA matrices, resulting in higher modulus and hardness. This study is the first detailed analysis to elucidate the role of unique GNS to favorably modulate the properties of a polymer.  相似文献   

3.
Guo P  Song H  Chen X  Ma L  Wang G  Wang F 《Analytica chimica acta》2011,(2):17818-155
The structure and electronic properties of graphene nanosheet (GNS) render it a promising conducting agent in a lithium-ion battery. A graphite electrode loaded with GNS exhibits superior electrochemical properties including higher rate performance, increased specific capacity and better cycle performance compared with that obtained by adding the traditional conducting agent–acetylene black. The high-quality sp2 carbon lattice, quasi-two-dimensional crystal structure and high aspect ratio of GNS provide the basis for a continuous conducting network to counter the decrease in electrode conductivity with increasing number of cycles, and guarantee efficient and fast electronic transport throughout the anode. Effects of GNS loading content on the electrochemical properties of graphite electrode are investigated and results indicate that the amount of conductive additives needed is decreased by using GNS. The kinetics and mechanism of lithium-storage for a GNS-loaded electrode are explored using a series of electrochemical testing techniques.  相似文献   

4.
Graphene nanosheets (GNS) supporting Pt nanoparticles (PNs) are prepared using perfluorosulfonic acid (PFSA) as a functionalization and anchoring agent. Transmission electron microscope (TEM) results indicate that the prepared Pt NPs are uniformly deposited on GNS with a narrow particle size ranging from 1 to 4 nm in diameter. A high catalytic activity of this novel catalyst is observed by both cyclic voltammetry and oxygen reduction reaction (ORR) measurements due to the increasing of proton (H(+)) transmission channels. Significantly, this novel PFSA-functionalized Pt/GNS (PFSA-Pt/GNS) catalyst reveals a better CO oxidation and lower loss rate of electrochemical active area in comparison with that of the plain Pt/GNS and conventional Pt/C catalysts, indicating our PFSA-Pt/GNS catalysts hold much higher stability and CO tolerance by virtue of introduction of PFSA.  相似文献   

5.
Polyaniline (PANI)/graphene nanosheet (GNS) composites were prepared by a chemical oxidation polymerization. The morphology, structure, and crystallinity of the composites were examined by scanning electron microscopy, transition electron microscopy, and X-ray diffraction. Electrochemical properties were characterized by cyclic voltammetry in 1 M H2SO4 electrolyte. GNS are considered as supporting materials which can provide a large number of active sites. The PANI nanofibers with diameter of 50 nm were homogeneously coated on the surface of GNS. The PANI/GNS composites exhibited a better electrochemical performance than the pure individual components. The PANI/GNS composites showed the highest specific capacitance 923 Fg?1 at 10 mVs?1 compared to 465 Fg?1 for pure PANI and 99 Fg?1 for GNS.  相似文献   

6.
The adsorption process of three aptamers with gold nanosheet (GNS) as a drug carrier has been investigated with the help of molecular dynamics simulations. The sequencing of the considered aptamers are as (CUUCAUUGUAACUUCUCAUAAUUUCCCGAGGCUUUUACUUUCGGGGUCCU) and (CCGGGUCGUCCCCUACGGGGACUAAAGACUGUGUCCAACCGCCCUCGCCU) for AP1 and AP2, respectively. AP3 is a muted version of AP1 in which nucleotide positions 4, 6, 18, 28 and 39 have C4A, U6G, A18G, G28A, and U39C mutations. At positions 24, and 40, a deletion mutation is seen to eliminate U24 and U40 bases. These aptamers are inhibitors for HIV-1 protease and can be candidates as potential pharmaceutics for treatment of AIDS in the future. The interactions between considered aptamers and GNS have been analyzed in detail with help of structural and energetic properties. These analyses showed that all three aptamers could well adsorb on GNS. Overall, the final results show that the adsorption of AP2 on the GNS is more favorable than other considered ones and consequently GNS can be considered as a device in order to immobilize these aptamers.  相似文献   

7.
The binding of 3d (Sc, Ti, V), 4d (Y, Zr, Nb), and 5d (La, Hf, Ta) transition metals on graphene nanosheet (TM–GNS) with hydrogen-terminated edges and the adsorption of H2CO and HCN molecules on the pristine and TM-doped GNSs were theoretically studied using a density functional theory method. The calculation showed that all TM atoms had strong binding with GNS, in which the Ta atom displayed the strongest interaction with GNS. The H2CO and HCN molecules showed much stronger adsorption on the TM–GNSs than that on the pristine GNS. The H2CO showed stronger interactions with TM–GNSs than that of HCN, in which the Ta-doping displayed the strongest interactions between the GNS and H2CO or HCN. The adsorption interactions induced dramatic changes of TM–GNS electronic properties. The results revealed that the adsorption strength and sensor ability of GNS can be greatly improved by introducing appropriate TM dopants. Therefore, TM-doped GNSs are suitable for application in H2CO and HCN storage and sensor.  相似文献   

8.
Nano-hydroxyapatite (nHA)-matrix coatings containing graphene nanosheets (GNS)-nHA were coated on Ti6Al7Nb alloys by plasma electrolytic oxidation (PEO) treatment for the improvement of their surface properties. Crystallographic properties, functional groups, and elemental analysis of coatings were characterized by XRD, ATR–FTIR, and EDS analysis. Surface morphological changes of the coated surfaces were investigated by AFM and SEM. The electrochemical corrosion behavior of the coatings was examined by using the potentiodynamic scanning (PDS) tests under in-vitro conditions in simulated body fluid (SBF). The results showed that the GNS was successfully deposited in ceramic matrix coatings on Ti6Al7Nb alloys. Also, the microstructural observations revealed that the coatings have a porous and rough structure. The XRD and ATR–FTIR quantitative analysis have proved the appearance of HA and GNS in the coating layers. An increase in the coating thickness, surface hardness, and anatase/rutile transformation rate was determined, while the GNS ratio in the coating layers was increased. The microhardness of the nHA coating reinforced with 1.5 wt% GNS was measured at 862 HV, which was significantly higher than that of GNS-free (only nHA) coating (584 HV). The best in-vitro resistance to corrosion in SBF was observed in the nHA/1.5GNS wt% coating.  相似文献   

9.
A Co(OH)2?graphene nanosheets (Co(OH)2?GNS) composite as a high performance anode material was firstly prepared through a simultaneous hydrothermal method. The structure, morphology and electrochemical performance of the obtained samples were systematically investigated by X-ray diffraction (XRD), transmission electron microscope (TEM) and electrochemical measurements. According to the TEM analysis, the surface of the Co(OH)2 is surrounded with GNS in the Co(OH)2?GNS composite. The specific discharge (lithiation) and charge (delithiation) capacities of Co(OH)2?GNS attain to 1599 and 1120 mAh/g at a current density of 200 mA/g in the first cycle, respectively. After 30 cycles, the reversible capacity of Co(OH)2?GNS is still 910 mAh/g with the retention of 82%. The particular structure of Co(OH)2 particles surrounded by the GNS could limit the volume change during cycling and provide an excellent electronic conduction pathway, which could be the main reason for the remarkable improvement of electrochemical performance.  相似文献   

10.
Uniform dispersion of graphene nanosheets (GNS) in a polymer matrix with strong filler–matrix interfacial interaction, preserving intrinsic material properties of GNS, is the critical factor for application of GNS in polymer composites. In this work, a novel reactive copolymer VCz–GMA containing carbazole and epoxide group was designed, synthesized and employed to noncovalently functionalize GNS for preparing epoxy nanocomposites with enhanced mechanical properties. The presence of carbazole groups in VCz–GMA enables the tight absorption of copolymer on to graphene surface via π–π stacking interaction, as evidenced by Raman and fluorescence spectroscopy, whereas the epoxide segments chemically reacts with the epoxy matrix, improving the compatibility and interaction of graphene with epoxy matrix. As a result, the VCz–GMA–GNS/epoxy composite showed a remarkable enhancement in both mechanical and thermal property than either the pure epoxy or the graphene/epoxy composites. The incorporation of 0.35 wt % VCz–GMA–GNS yields a tensile strength of 55.72 MPa and elongation at break of 3.45, which are 42 and 191% higher than the value of pure epoxy, respectively. Increased glass transition temperature and thermal stability of the epoxy composites were also observed. In addition, a significant enhancement in thermal conductivity was achieved with only 1 wt % VCz–GMA–GNS loading. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2776–2785  相似文献   

11.
采用EAM作用势对Cu-Ni合金的结构特性进行了MD模拟研究.通过FZ结构因子可发现,Cu含量的变化对结构因子的波动影响很小,键取向序参数和键对也表现出相似的变化规律,这表明液态Cu-Ni合金对成份变化不敏感,体系中的化学序较弱.将Cu70Ni30合金熔体的FZ结构因子与Waseda的实验结果进行对比,发现二者吻合得较好,表明EAM势可以很好地描绘Cu-Ni合金的结构特性.在快速冷却过程中,除了Cu20Ni80合金外,其他合金成份的双体分布函数的第二峰都发生了劈裂,标志着体系最终形成了非晶结构,而Cu20Ni80合金的双体分布函数却表现出晶体峰的特征.通过对键取向序参数、键型指数以及铜镍原子的有效扩散系数的分析表明,在快速冷却过程中,Cu20Ni80合金最终形成了hcp晶体结构.  相似文献   

12.
Epoxy-based nanocomposites containing different concentrations (0–3%) of surface-modified graphene nanosheets (GNS) with 3-aminopropyltriethoxysilane were prepared and their thermal and mechanical properties including dynamic mechanical analysis, tensile strength, hardness, and abrasion tests were evaluated in order to have a database for thermo-mechanical properties of epoxy nanocomposites. The main aim of this study was to understand the optimum percentage of GNS which would perform the best reinforcing influence on mechanical and physical performance of an epoxy nanocomposite. The results explain how applying the analysis of variance (ANOVA) method as a useful tool in optimization of GNS concentration in preparation of high-performance epoxy-based nanocomposites.  相似文献   

13.
在乙醇/水体系中采用KBH4液相还原法, 以石墨微粉为载体, Cu为复合金属, 通过两步法合成了具有球状团簇结构的负载型纳米Cu/Fe二元合金. 与单纯负载型纳米Fe0相比, 该复合材料对三氯乙烯(TCE)具有更高的还原脱氯性能, 纳米Fe0的质量浓度为10 g/L时, 5 h内能将10 mg/L的TCE完全去除. 将十六烷基三甲基溴化铵(CTAB)用于负载型纳米二元合金的表面改性, 改性后的材料对TCE的还原脱氯性能提高. 改性材料连续降解TCE 36 d, 10.2 mg/L TCE在7 h内即完全去除, 材料改性后不易氧化失活, 还原性能保持长期稳定.  相似文献   

14.
Nanocrystalline tin (Sn) compounds such as SnO2, SnS2, SnS, and graphene nanocomposites were prepared using hydrothermal method. The X-ray diffraction (XRD) pattern of the prepared nanocomposite reveals the presence of tetragonal SnO2, hexagonal SnS2, and orthorhombic SnS crystalline structure in the SnO2/graphene nanosheets (GNS), SnS2/GNS, and SnS/GNS nanocomposites, respectively. Raman spectroscopic studies of the nanocomposites confirm the existence of graphene in the nanocomposites. The transmission electron microscopy (TEM) images of the nanocomposites revealed the formation of homogeneous nanocrystalline SnO2, SnS2, and SnS particle. The weight ratio of graphene and Sn compound in the nanocomposite was estimated using thermogravimetric (TG) analysis. The cyclic voltammetry experiment shows the irreversible formation of Li2O and Li2S, and reversible lithium-ion (Li-ion) storage in Sn and GNS. The charge–discharge profile of the nanocomposite electrodes indicates the high capacity for the Li-ion storage, and the cycling study indicates the fast capacity fading due to the poor electrical conductivity of the nanocomposite electrodes. Hence, the ratio of Sn compounds (SnO2) and GNS have been altered. Among the examined SnO2:GNS nanocomposites ratios (35:65, 50:50, and 80:20), the nanocomposite 50:50wt% shows high Li-ion storage capacity (400 mAh/g after 25 cycles) and good cyclability. Thus, it is necessary to modify GNS and Sn compound composition in the nanocomposite to achieve good cyclability.  相似文献   

15.
A facile process was developed to synthesize MoS(2)/graphene nanosheet (GNS) composites by a one-step in situ solution-phase method. These MoS(2)/GNS composites therefore exhibit extraordinary capacity, i.e., up to 1300 mA h g(-1), and excellent rate capability and cycling stability as an anode material for lithium ion batteries.  相似文献   

16.
A reactive extrusion process was developed to fabricate polymer/graphene nanocomposites with good dispersion of graphene sheets in the polymer matrix. The functionalized graphene nanosheet (f‐GNS) activated by diphenylmethane diisocyanate was incorporated in thermoplastic polyester elastomer (TPEE) by reactive extrusion process to produce the TPEE/f‐GNS masterbatch. And then, the TPEE/f‐GNS nanocomposites in different ratios were prepared by masterbatch‐based melt blending. The structure and morphology of functionalized graphene were characterized by Fourier transform infrared, X‐ray photoelectron spectroscopy, X‐ray diffraction and transmission electron microscopy (TEM). The incorporation of f‐GNS significantly improved the mechanical, thermal and crystallization properties of TPEE. With the incorporation of only 0.1 wt% f‐GNS, the tensile strength and elongation at break of nanocomposites were increased by 47.6% and 30.8%, respectively, compared with those of pristine TPEE. Moreover, the degradation temperature for 10 wt% mass loss, storage modulus at ?70°C and crystallization peak temperature (Tcp) of TPEE nanocomposites were consistently improved by 17°C, 7.5% and 36°C. The remarkable reinforcements in mechanical and thermal properties were attributed to the homogeneous dispersion and strong interfacial adhesion of f‐GNS in the TPEE matrix. The functionalization of graphene was beneficial to the improvement of mechanical properties because of the relatively well dispersion of graphene sheets in TPEE matrix, as suggested in the TEM images. This simple and effective approach consisting of chemical functionalization of graphene, reactive extrusion and masterbatch‐based melt blending process is believed to offer possibilities for broadening the graphene applications in the field of polymer processing. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The addition of graphene nanosheets (GNSs) in lubricating grease could significantly reduce the interfacial friction and improve the load-bearing capacity of the parts. Therefore, it has been considered as having great potential as lubricant additives. In this study, we synthesized GNSs that are prepared by a modified Hummer method, and investigated the effect of GNS with different concentration (0.5%, 1%, 2%, 3%, and 4?wt%) on the tribological properties of the calcium grease. The friction and wear experiments were performed using a four-ball tribometer. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were employed to examine the GNS and the friction mechanisms. Results indicate that the friction reduction ability and anti-wear property of the base grease can be improved with the addition of GNS. It was also found that the friction reduction decreases by 61%, and the wear scar diameter (WSD) decreases by 45%, and the extreme-pressure (EP) properties increased 60% at 3?wt% GNS. It is clear that the GNS in grease easily forms protective deposited films to prevent the rubbing surfaces from coming into direct contact, thereby improving the entire tribological behavior of the grease.  相似文献   

18.
《先进技术聚合物》2018,29(1):632-640
The nanocompsites of star‐shaped poly(D‐lactide)‐co‐poly(L‐lactide) stereoblock copolymers (s‐PDLA‐PLLA) with two‐dimensional graphene nanosheets (GNSs) were prepared by solution mixing method. Crystallization behaviors were investigated using differential scanning calorimetry, polarized optical microscopy, and wide angle X‐ray diffraction. The results of isothermal crystallization behaviors of the nanocompsites clearly indicated that the GNS could remarkably accelerate the overall crystallization rate of s‐PDLA‐PLLA copolymer. Unique stereocomplex crystallites with melting temperature about 207.0°C formed in isothermal crystallization for all samples. The crystallization temperatures of s‐PDLA‐PLLAs shifted to higher temperatures, and the crystallization peak shapes became sharper with increasing GNS contents. The maximum crystallization temperature of the sample with 3 wt% GNS was about 128.2°C, ie, 15°C higher than pure s‐PDLA‐PLLA. At isothermal crystallization processes, the halftime of crystallization (t0.5) of the sample with 3 wt% GNS decreased to 6.4 minutes from 12.9 minutes of pure s‐PDLA‐PLLA at 160°C.The Avrami exponent n values for the nanocomposites samples were 2.6 to 3.0 indicating the crystallization mechanism with three‐dimensional heterogeneous nucleation and spherulites growth. The morphology and average diameter of spherulites of s‐PDLA‐PLLA with various GNS contents were observed in isothermal crystallization processes by polarized optical microscopy. Spherulite growth rates of samples were evaluated by using combined isothermal and nonisothermal procedures and analyzed by the secondary nucleation theory. The results evidenced that the GNS has acceleration effects on the crystallization of s‐PDLA‐PLLA with good nucleation ability in the s‐PDLA‐PLLA material.  相似文献   

19.
采用氧化石墨(GO)还原法制备石墨烯(GNS),以氨水为沉淀剂,在石墨烯存在的情况下,通过Co2+和Ni2+化学共沉积的方法合成了石墨烯/钴镍双氢氧化物复合电极材料,采用红外光谱(FT-IR)、X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、比表面积测试(BET)等技术手段表征了产物的组成、结构和形貌,用循环伏安、恒电流充放电等测试方法对复合材料的电化学性能进行了研究。 研究发现,石墨烯纳米片均匀分散在钴镍双氢氧化物中,改善了钴镍双氢氧化物的传导性和结构稳定性。 电化学测试表明,在1 A/g的电流密度下,复合材料比电容高达2770 F/g,且循环500次后,比电容仍能保持93.4%,呈示该复合材料具有优异的电化学性能。  相似文献   

20.
The crystallization of alkane melts on carbon nanotubes (CNT) and the surface of graphene nanosheets (GNS) is investigated using molecular dynamics (MD) simulations. The crystallization process of the alkane melts is analyzed in terms of the bond-orientational order parameter, atomic radial distribution for the CNT/alkane, atomic longitudinal distribution for the GNS/alkane, and diffusion properties. The dimensional effects of the different carbon-based nanostructures on the crystallization of alkane melts are shown. It is found that one-dimensional CNT has a stronger ability to induce the crystallization of the polymer than that of two-dimensional GNS, which provides a support at molecular level for the experimental observation [Li et al., J. Am. Chem. Soc., 2006, 128, 1692 and Xu et al., Macromolecules, 2010, 43, 5000]. From the MD simulations, we also find that the crystallization of alkane molecules has been completed with the highly cooperative processes of adsorption and orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号