首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theoretical study of the mechanism of decarboxylation of beta-keto acids is described. A cyclic transition structure was found with essentially complete proton transfer from the carboxylic acid to the beta-carbonyl group. The activation barrier for decarboxylation of formylacetic acid is predicted to be 28.6 kcal/mol (MP4SDTQ/6-31G//MP2/6-31G) while loss of CO(2) from its anion exhibits a barrier of only 20.6 kcal/mol (MP4SDTQ/6-31+G//MP2/6-31+G). Barrier heights of decarboxylation of malonic acid and alpha,alpha-dimethylacetoacetic acid are predicted to be 33.2 and 26.7 kcal/mol, respectively. Model enzyme studies using a thio methyl ester of malonate anion suggests that the role of malonyl-CoA is to afford a polarizable sulfur atom to stabilize the developing enolate anion in the transition structure for decarboxylation. Adjacent positively charged ammonium ions are also observed to stabilize the loss of CO(2) from a carboxylate anion by through-bond Coulombic stabilization of the transition structure.  相似文献   

2.
Heats of reaction and barrier heights have been computed for H + CH2CH2 → C2H5, H + CH2O → CH3O, and H + CH2O → CH2OH using unrestricted Hartree-Fock and Møller–Plesset perturbation theory up to fourth order (with and without spin annihilation), using single-reference configuration interaction, and using multiconfiguration self-consistent field methods with 3-21G, 6-31G(d), 6-31G(d,p), and 6-311G(d,p) basis sets. The barrier height in all three reactions appears to be relatively insensitive to the basis sets, but the heats of reaction are affected by p-type polarization functions on hydrogen. Computation of the harmonic vibrational frequencies and infrared intensities with two sets of polarization functions on heavy atoms [6-31G(2d)] improves the agreement with experiment. The experimental barrier height for H + C2H4 (2.04 ± 0.08 kcal/mol) is overestimated by 7?9 kcal/mol at the MP2, MP3, and MP4 levels. MCSCF and CISD calculations lower the barrier height by approximately 4 kcal/mol relative to the MP4 calculations but are still almost 4 kcal/mol too high compared to experiment. Annihilation of the largest spin contaminant lowers the MP4SDTQ computed barrier height by 8?9 kcal/mol. For the hydrogen addition to formaldehyde, the same trends are observed. The overestimation of the barrier height with Møller-Plesset perdicted barrier heights for H + C2H4 → C2H5, H + CH2O → CH3O, and H + CH2O → CH2OH at the MP4SDTQ /6-31G(d) after spin annihilation are respectively 1.8, 4.6, and 10.5 kcal/mol.  相似文献   

3.
Peptides and proteins may contain post-translationally modified phosphorylated amino acid residues, in particular phosphorylated serine (pSer), threonine (pThr) and tyrosine (pTyr). Following earlier work by Lehmann et al., the [M-H]- anions of peptides containing pSer and pThr functionality show loss of the elements of H3PO4. This process, illustrated for Ser (and using a model system), is CH3CONH-C(CH2OPO3H2)CONHCH(3) --> [CH3CONHC(==CH2)CONHCH3 (-OPO3H2)] (a) --> [CH3CONHC(==CH2)CONHCH3-H]- + H3PO4, a process endothermic by 83 kJ mol(-1) at the MP2/6-31++G(d,p)//HF/6-31++G(d,p) level of theory. In addition, intermediate (a) may decompose to yield CH3CONHC(==CH2)CONHCH3 + H2PO4 - in a process exothermic by 3 kJ mol(-1). The barrier to the transition state for these two processes is 49 kJ mol(-1). Characteristic cleavages of pSer and pThr are more energetically favourable than the negative ion backbone cleavages of peptides described previously. In contrast, loss of HPO3 from [M-H]- is characteristic of pTyr. The cleavage [NH2CH(CH2-C6H4-OPO3H-)CO2H] --> [NH2C(CH2-C6H4-O-)CO2H (HPO3)] (b) --> NH2CH(CH2-C6H4-O-)CO2H + HPO3 is endothermic by 318 kJ mol(-1) at the HF/6-31+G(d)//AM1 level of theory. In addition, intermediate (b) also yields NH2CH(CH2-C6H4-OH)CO2H + PO3 - (reaction endothermic by 137 kJ mol(-1)). The two negative ion cleavages of pTyr have a barrier to the transition state of 198 kJ mol(-1) (at the HF/6-31+G(d)//AM1 level of theory) comparable with those already reported for negative ion backbone cleavages.  相似文献   

4.
The bond dissociation energies for a series of silyl peroxides have been calculated at the G2 and CBS-Q levels of theory. A comparison is made with the O-O BDE of the corresponding dialkyl peroxides, and the effect of the O-O bond strength on the activation barrier for oxygen atom transfer is discussed. The O-O bond dissociation enthalpies (DeltaH(298)) for bis (trimethylsilyl) peroxide (1) and trimethylsilyl hydroperoxide (2) are 54.8 and 53.1 kcal/mol, respectively at the G2 (MP2) and CBS-Q levels of theory. The O-O bond dissociation energies computed at G2 and G2(MP2) levels for bis(tert-butyl) peroxide and tert-butyl hydroperoxide are 45.2 and 48.3 kcal/mol, respectively. The barrier height for 1,2-methyl migration from silicon to oxygen in trimethylsilyl hydroperoxide is 47.9 kcal/mol (MP4//MP2/6-31G). The activation energy for the oxidation of trimethylamine to its N-oxide by bis(trimethylsilyl) peroxide is 28.2 kcal/mol (B3LYP/6-311+G(3df,2p)// B3LYP/6-31G(d)). 1,2-Silicon bridging in the transition state for oxygen atom transfer to a nucleophilic amine results in a significant reduction in the barrier height. The barrier for the epoxidation of E-2-butene with bis(dimethyl(trifluoromethyl))silyl peroxide is 25.8 kcal/mol; a reduction of 7.5 kcal/mol relative to epoxidation with 1. The activation energy calculated for the epoxidation of E-2-butene with F(3)SiOOSiF(3) is reduced to only 2.2 kcal/mol reflecting the inductive effect of the electronegative fluorine atoms.  相似文献   

5.
A series of substituted 2-nitrosiminobenzothiazolines (2) were synthesized by the nitrosation of the corresponding 2-iminobenzothiazolines (6). Thermal decomposition of 2a--f and of the seleno analogue 7 in methanol and of 3-methyl-2-nitrosobenzothiazoline (2a) in acetonitrile, 1,4-dioxane, and cyclohexane followed first-order kinetics. The activation parameters for thermal deazetization of 2a were measured in cyclohexane (Delta H(++) = 25.3 +/- 0.5 kcal/mol, Delta S(++) = 1.3 +/- 1.5 eu) and in methanol (Delta H(++) = 22.5 +/- 0.7 kcal/mol, Delta S(++) = -12.9 +/- 2.1 eu). These results indicate a unimolecular decomposition and are consistent with a proposed stepwise mechanism involving cyclization of the nitrosimine followed by loss of N(2). The ground-state conformations of the parent nitrosiminothiazoline (9a) and transition states for rotation around the exocyclic C==N bond, electrocyclic ring closure, and loss of N(2) were calculated using ab initio molecular orbital theory at the MP2/6-31G* level. The calculated gas-phase barrier height for the loss of N(2) from 9a (25.2 kcal/mol, MP4(SDQ, FC)/6-31G*//MP2/6-31G* + ZPE) compares favorably with the experimental barrier for 2a of 25.3 kcal/mol in cyclohexane. The potential energy surface is unusual; the rotational transition state 9a-rot-ts connects directly to the orthogonal transition state for ring-closure 9aTS. The decoupling of rotational and pseudopericyclic bond-forming transition states is contrasted with the single pericyclic transition state (15TS) for the electrocyclic ring-opening of oxetene (15) to acrolein (16). For comparison, the calculated homolytic strength of the N--NO bond is 40.0 kcal/mol (MP4(SDQ, FC)/6-31G*//MP2/6-31G* + ZPE).  相似文献   

6.
The mechanisms of the reactions of W and W+ with COx (x=1, 2) were studied at the CCSD(T)/[SDD+6-311G(d)]//B3LYP/[SDD+6-31G(d)] level of theory. It was shown that the gas-phase reaction of W with CO2 proceeds with a negligible barrier via an insertion pathway, W(7S)+CO2(1A1)-->W(eta2-OCO)(6A')-->OW(eta1-CO)(1A)-->WO (3Sigma+)+CO(1Sigma). This oxidation process is calculated to be exothermic by 32.4 kcal/mol. Possible intermediates of this reaction are the W(eta2-OCO) and OWCO complexes, among which the latter is 37.4 kcal/mol more stable and lies 39.7 and 7.3 kcal/mol lower than the reactants, W(7S)+CO2(1A1), and the products, WO (3Sigma+)+CO(1Sigma), respectively. The barrier separating W(eta2-OCO) from OWCO is 8.0 kcal/mol (relative to the W(eta2-OCO) complex), which may be characterized as a W+delta-(CO2)-delta charge-transfer complex. Ionization of W does not change the character of the reaction of W with CO2: the reaction of W+ with CO2, like its neutral analog, proceeds via an insertion pathway and leads to oxidation of the W-center. The overall reaction W+(6D) + CO2(1A1)-->W(eta1-OCO)+(6A)-->OW(eta1-CO)+(4A)-->WO+(4Sigma+)+CO(1Sigma) is calculated to be exothermic by 25.4 kcal/mol. The cationic reaction proceeds with a somewhat large (9.9 kcal/mol) barrier and produces two intermediates, W(eta1-OCO)+(6A) and OW(eta1-CO)+(4A). Intermediate W(eta1-OCO)+(6A) is 20.0 kcal/mol less stable than OW(eta1-CO)+(4A), and separated from the latter by a 35.2 kcal/mol barrier. Complex W(eta1-OCO)+(6A) is characterized as an ion-molecular complex type of W+-(CO2). Gas-phase reactions of M=W/W+ with CO lead to the formation of a W-carbonyl complex M(eta1-CO) for both M=W and W+. The C-O insertion product, OMC, lies by 5.2 and 69.3 kcal/mol higher than the corresponding M(eta1-CO) isomer, for M=W and W+, respectively, and is separated from the latter by a large energy barrier.  相似文献   

7.
Gas-phase activation data were obtained for model sulfoxide elimination reactions. The activation enthalpy for methyl 3-phenylpropyl sulfoxide is 32.9 +/- 0.9 kcal/mol. Elimination by methyl vinyl sulfoxide to form acetylene has an enthalpic barrier of 41.6 +/- 0.8 kcal/mol and that of 3-phenylpropyl methanesulfinate to form hydrocinnamaldehyde is 34.6 +/- 0.6 kcal/mol. Calculations at the MP2/6-311+G(3df,2p)//MP2/6-31G(d,p) level for simplified models of these reactions provide barriers of 32.3, 40.3, and 32.7 kcal/mol, respectively. A series of other compounds are examined computationally, and it is shown that the substituent effects on the sulfoxide elimination reaction are much more straightforward to interpret if DeltaH data are available in addition to the usually determined DeltaH++. The activation enthalpy of the reverse addition reaction is also subject to structural variation and can usually be rationalized on the basis of nucleophilicity of the sulfur or polarity matching between the sulfenic acid and olefin derivative.  相似文献   

8.
A conformational search was performed for the 12-crown-4 (12c4)-alkali metal cation complexes using two different methods, one of them is the CONFLEX method, whereby eight conformations were predicted. Computations were performed for the eight predicted conformations at the HF/6-31+G*, MP2/6-31+G*//HF/6-31+G*, B3LYP/6-31+G*, MP2/6-31+G*//B3LYP/6-31+G*, and MP2/6-31+G* levels. The calculated energies predict a C4 conformation for the 12c4-Na+, -K+, -Rb+, and -Cs+ complexes and a C(s) conformation for the 12c4-Li+ complex to be the lowest energy conformations. For most of the conformations considered, the relative energies, with respect to the C4 conformation, at the MP2/6-31+G*//B3LYP/6-31+G* are overestimated, compared to those at the MP2/6-31+G* level, the highest level of theory considerd in this report, by 0.2 kcal/mol. Larger relative energy differences are attributed to larger differences between the B3LYP and MP2 optimized geomtries. Binding enthalpies (BEs) were calculated at the above-mentioned levels for the eight conformations. The agreement between the calculated and experimental BEs is discussed.  相似文献   

9.
Ab initio and density functional calculations have been performed on the different possible structures of selenourea(su), urea(u) and thiourea(tu) to understand the extent of delocalisation in selenourea in comparison to urea and thiourea. Selenourea(su-1) withC 2 symmetry has the minima on the potential energy surface at MP2(fu)/6-31+G* level. The C-N rotational barrier in selenourea is 8.69 kcal/mol, which is 0.29 and 0.11 kcal/mol more than that of urea and thiourea respectively at MP2(fu)/6-31+G* level. N-inversion barrier is 0.55 kcal/mol at MP2(fu)6-31+G* level. NBO analysis has been carried out to understand the nature of different interactions responsible for the electron delocalisation.  相似文献   

10.
A detailed computational study is performed on the unknown radical-molecule reactions between HCO/HOC and acetylene (C2H2) at the CCSD(T)/6-311G(2d,p)//B3LYP/6-311G(d,p)+ZPVE, Gaussian-3//B3LYP/6-31G(d), and Gaussian-3//MP2(full)/6-31G(d) levels. For the HCO + C2H2 reaction, the most favorable pathway is direct C-addition forming the intermediate HC=CHCH=O followed by a 1,3-H-shift leading to H2C=CHC=O, which finally dissociates to the product C2H3 + CO. The overall reaction barrier is 13.8, 10.5, and 11.3 kcal/mol, respectively, at the three levels. The quasi-direct H-donation process to produce C2H3 + CO with barriers of 14.0, 14.1, and 14.1 kcal/mol is less competitive. Thus only at higher temperatures could the HCO + C2H2 reaction play a role. In contrast, the HOC + C2H2 reaction can barrierlessly generate C2H3 + CO via the quasi-direct H-donation mechanism proceeding via a prereactive complex with OH...C2 hydrogen bonding. This is suggestive of the potential importance of the HOC + C2H2 reaction in both combustion and interstellar processes. However, the direct C-addition channel is much less competitive. For both reactions, the possible formation of the intriguing interstellar molecules propadiene and propynal is also discussed. The present theoretical study represents the first attempt to probe the reaction mechanism between HOC and pi-systems. Future laboratory investigations on both reactions (particularly HOC + C2H2) are recommended.  相似文献   

11.
The structural stability of acetohydrazide CH(3)-CO-NH-NH(2) was investigated by DFT-B3LYP and ab initio MP2 calculations with 6-311+G** basis set. The C-N rotational barrier in the molecule was calculated to be about 26 kcal/mol that suggested the planar sp(2) nature of the nitrogen atom of the central NH moiety. The N atom of the terminal NH(2) group was predicted to highly prefer the pyramidal sp(3) structure with an inversion barrier of about 7-8 kcal/mol. The molecule was predicted to have a trans-syn (N-H bond is trans with respect to CO bond and NH(2) moiety is syn to C-N bond) conformation as the lowest energy structure. The vibrational frequencies were computed at B3LYP level of theory and normal coordinate calculations were carried out for the trans-syn acetohydrazide. Complete vibrational assignments were made on the basis of normal coordinate analyses and experimental infrared and Raman data.  相似文献   

12.
The mechanism of size-dependent intracluster hydrogen loss in the cluster ions Mg(+)(H(2)O)(n), which is switched on around n=6, and off around n=14, was studied by ab initio calculations at the MP2/6-31G* and MP2/6-31G** levels for n=1-6. The reaction proceeds by Mg(+)-assisted breaking of an H-O bond in one of the H(2)O molecules. The reaction barrier is dependent on both the cluster size and the solvation structure. As n increases from 1 to 6, there is a dramatic drop in the reaction barrier, from greater than 70 kcal mol(-1) for n=1 to less than 10 kcal mol(-1) for n=6. In the transition structures, the Mg atom is close to the oxidation state of +2, and H(2)O molecules in the first solvation shell are much more effective in stabilizing the transition structures and lowering the reaction barriers than H(2)O molecules in the other solvation shells. While the reaction barrier for trimer core structures with only three H(2)O molecules in the first shell is greater than 24 kcal mol(-1), even for Mg(+)(H(2)O)(6), it drops considerably for clusters with four-six H(2)O molecules in the first shell. The more highly coordinated complexes have comparable or slightly higher energy than the trimer core structures, and the presence of such high coordination number complexes is the underlying kinetic factor for the switching on of the hydrogen-loss reaction around n=6. For clusters with trimer core structures, the hydrogen loss reaction is much easier when it is preceded by an isomerization step that increases the coordination number around Mg(+). Delocalization of the electron on the singly occupied molecular orbital (SOMO) away from the Mg(+) ion is observed for the hexamer core structure, while at the same time this isomer is the most reactive for the hydrogen-loss reaction, with an energy barrier of only 2.7 kcal mol(-1) at the MP2/6-31G** level.  相似文献   

13.
Rate coefficients are calculated using canonical variational transition state theory with multidimensional tunneling (CVT/SCT) for the reactions H + H2O2 --> H2O + OH (1a) and H + H2O2 --> HO2 + H2 (1b). Reaction barrier heights are determined using two theoretical approaches: (i) comparison of parametrized rate coefficient calculations employing CVT/SCT to experiment and (ii) high-level ab initio methods. The evaluated experimental data reveal considerable variations of the barrier height for the first reaction: although the zero-point-exclusive barrier for (1a) derived from the data by Klemm et al. (First Int. Chem. Kinet. Symposium 1975, 61) is 4.6 kcal/mol, other available measurements result in a higher barrier of 6.2 kcal/mol. The empirically derived zero-point-exclusive barrier for (1b) is 10.4 kcal/mol. The electronic structure of the system at transition state geometries in both reactions was found to have "multireference" character; therefore special care was taken when analyzing electronic structure calculations. Transition state geometries are optimized by multireference perturbation theory (MRMP2) with a variety of one-electron basis sets, and by a multireference coupled cluster (MR-AQCCSD) method. A variety of single-reference benchmark-level calculations have also been carried out; included among them are BMC-CCSD, G3SX(MP3), G3SX, G3, G2, MCG3, CBS-APNO, CBS-Q, CBS-QB3, and CCSD(T). Our data obtained at the MRMP2 level are the most complete; the barrier height for (1a) using MRMP2 at the infinite basis set limit is 4.8 kcal/mol. Results are also obtained with midlevel single-reference multicoefficient correlation methods, such as MC3BB, MC3MPW, MC-QCISD/3, and MC-QCISD-MPWB, and with a variety of hybrid density functional methods, which are compared with high-level theory. On the basis of the evaluated experimental values and the benchmark calculations, two possible recommended values are given for the rate coefficients.  相似文献   

14.
Free-energy barriers of 9.85 and 11.91 +/- 0.15 kcal/mol at -70.8 degrees C were found by dynamic NMR spectroscopy for the E-to-Z and Z-to-E conversions, respectively, of methyl formate (1) enriched in 13C to 99% for the carbonyl carbon [methyl formate 13C (2)]. These barriers are higher than the literature values reported for -53 degrees C. The free-energy barrier to 1,3 oxygen-to-oxygen migration of the methyl group in methyl formate was determined by ab initio calculations at several levels. The value of 58.7 kcal/mol obtained at the MP2/6-311+G (df,pd) level was compared to a literature barrier for this process (MINDO/3) and to barriers for related compounds. A free-energy barrier of 63.0 kcal/mol for the oxygen - to - oxygen migration of the CF3 group in trifluoromethyl formate (3) was calculated at the MP2/6-31+G level.  相似文献   

15.
Several previous studies have shown that b(1) ions (formally acylium ions, H(2)NCHRCO(+)) derived from protonated aliphatic amino acids are unstable in the gas phase, fragmenting via decarbonylation to form a(1) ions (iminium ions, H(2)N = CHR(+)). Herein we examine the fragmentation reactions of ten potential b(1) ion precursors to determine whether stable aliphatic b(1) ions can be formed in the gas phase. Of all the systems studied, only the aziridine b(1) ion and the dehydroalanine b(1) ion were found to be stable. These experimental results are entirely consistent with ab initio calculations (at the MP2(full)/6-311G** level) which indicate that while the loss of CO from the b(1) ion of glycine is barrierless and exoethermic, the related losses from the b(1) ions of aziridine and dehydroalanine have significant barriers (29.5 and 16.2 kcal mol(-1), respectively) and are endothermic overall.  相似文献   

16.
Thermochemical parameters of carbonic acid and the stationary points on the neutral hydration pathways of carbon dioxide, CO 2 + nH 2O --> H 2CO 3 + ( n - 1)H 2O, with n = 1, 2, 3, and 4, were calculated using geometries optimized at the MP2/aug-cc-pVTZ level. Coupled-cluster theory (CCSD(T)) energies were extrapolated to the complete basis set limit in most cases and then used to evaluate heats of formation. A high energy barrier of approximately 50 kcal/mol was predicted for the addition of one water molecule to CO 2 ( n = 1). This barrier is lowered in cyclic H-bonded systems of CO 2 with water dimer and water trimer in which preassociation complexes are formed with binding energies of approximately 7 and 15 kcal/mol, respectively. For n = 2, a trimeric six-member cyclic transition state has an energy barrier of approximately 33 (gas phase) and a free energy barrier of approximately 31 (in a continuum solvent model of water at 298 K) kcal/mol, relative to the precomplex. For n = 3, two reactive pathways are possible with the first having all three water molecules involved in hydrogen transfer via an eight-member cycle, and in the second, the third water molecule is not directly involved in the hydrogen transfer but solvates the n = 2 transition state. In the gas phase, the two transition states have comparable energies of approximately 15 kcal/mol relative to separated reactants. The first path is favored over in aqueous solution by approximately 5 kcal/mol in free energy due to the formation of a structure resembling a (HCO 3 (-)/H 3OH 2O (+)) ion pair. Bulk solvation reduces the free energy barrier of the first path by approximately 10 kcal/mol for a free energy barrier of approximately 22 kcal/mol for the (CO 2 + 3H 2O) aq reaction. For n = 4, the transition state, in which a three-water chain takes part in the hydrogen transfer while the fourth water microsolvates the cluster, is energetically more favored than transition states incorporating two or four active water molecules. An energy barrier of approximately 20 (gas phase) and a free energy barrier of approximately 19 (in water) kcal/mol were derived for the CO 2 + 4H 2O reaction, and again formation of an ion pair is important. The calculated results confirm the crucial role of direct participation of three water molecules ( n = 3) in the eight-member cyclic TS for the CO 2 hydration reaction. Carbonic acid and its water complexes are consistently higher in energy (by approximately 6-7 kcal/mol) than the corresponding CO 2 complexes and can undergo more facile water-assisted dehydration processes.  相似文献   

17.
Hydrogen bonding was studied in 24 pairs of isopropyl alcohol and phenol as one partner, and water and amino-acid mimics (methanol, acetamide, neutral and protonated imidazole, protonated methylalamine, methyl-guanidium cation, and acetate anion) as the other partner. MP2/6-31+G* and MP2/aug-cc-pvtz calculations were conducted in the gas phase and in a model continuum dielectric environment with dielectric constant of 15.0. Structures were optimized in the gas phase with both basis sets, and zero-point energies were calculated at the MP2/6-31+G* level. At the MP2/aug-cc-pvtz level, the BSSE values from the Boys-Bernardi counterpoise calculations amount to 10-20 and 5-10% of the uncorrected binding energies of the neutral and ionic complexes, respectively. The geometry distortion energy upon hydrogen-bond formation is up to 2 kcal/mol, with the exception of the most strongly bound complexes. The BSSE-corrected MP2/aug-cc-pvtz binding energy of -27.56 kcal/mol for the gas-phase acetate...phenol system has been classified as a short and strong hydrogen bond (SSHB). The CH3NH3+...isopropyl alcohol complex with binding energy of -22.54 kcal/mol approaches this classification. The complete basis set limit (CBS) for the binding energy was calculated for twelve and six complexes on the basis of standard and counterpoise-corrected geometry optimizations, respectively. The X...Y distances of the X-H...Y bridges differ by up to 0.03 A as calculated by the two methods, whereas the corresponding CBS energy values differ by up to 0.03 kcal/mol. Uncorrected MP2/aug-cc-pvtz hydrogen-bonding energies are more negative by up to 0.35 kcal/mol than the MP2/CBS values, and overestimate the CCSD(T)/CBS binding energies generally by up to 5% for the eight studied complexes in the gas phase. The uncorrected MP2/aug-cc-pvtz binding energies decreased (in absolute value) by 11-18 kcal/mol for the ionic species and by up to 5 kcal/mol for the neutral complexes when the electrostatic effect of a polarizable model environment was considered. The DeltaECCSD(T) - DeltaEMP2 corrections still remained close to their gas-phase values for four complexes with 0, +/-1 net charges. Good correlations (R2 = 0.918-0.958) for the in-environment MP2/aug-cc-pvtz and MP2/6-31+G* hydrogen-bonding energies facilitate the high-level prediction of these energies on the basis of relatively simple MP2/6-31+G* calculations.  相似文献   

18.
Potential energy surfaces (PESs) of the reactions of 1- and 2-naphthyl radicals with molecular oxygen have been investigated at the G3(MP2,CC)//B3LYP/6-311G** level of theory. Both reactions are shown to be initiated by barrierless addition of O(2) to the respective radical sites of C(10)H(7). The end-on O(2) addition leading to 1- and 2-naphthylperoxy radicals exothermic by 45-46 kcal/mol is found to be more preferable thermodynamically than the side-on addition. At the subsequent reaction step, the chemically activated 1- and 2-C(10)H(7)OO adducts can eliminate an oxygen atom leading to the formation of 1- and 2-naphthoxy radical products, respectively, which in turn can undergo unimolecular decomposition producing indenyl radical + CO via the barriers of 57.8 and 48.3 kcal/mol and with total reaction endothermicities of 14.5 and 10.2 kcal/mol, respectively. Alternatively, the initial reaction adducts can feature an oxygen atom insertion into the attacked C(6) ring leading to bicyclic intermediates a10 and a10' (from 1-naphthyl + O(2)) or b10 and b10' (from 2-naphthyl + O(2)) composed from two fused six-member C(6) and seven-member C(6)O rings. Next, a10 and a10' are predicted to decompose to C(9)H(7) (indenyl) + CO(2), 1,2-C(10)H(6)O(2) (1,2-naphthoquinone) + H, and 1-C(9)H(7)O (1-benzopyranyl) + CO, whereas b10 and b10' would dissociate to C(9)H(7) (indenyl) + CO(2), 2-C(9)H(7)O (2-benzopyranyl) + CO, and 1,2-C(10)H(6)O(2) (1,2-naphthoquinone) + H. On the basis of this, the 1-naphthyl + O(2) reaction is concluded to form the following products (with the overall reaction energies given in parentheses): 1-naphthoxy + O (-15.5 kcal/mol), indenyl + CO(2) (-123.9 kcal/mol), 1-benzopyranyl + CO (-97.2 kcal/mol), and 1,2-naphthoquinone + H (-63.5 kcal/mol). The 2-naphthyl + O(2) reaction is predicted to produce 2-naphthoxy + O (-10.9 kcal/mol), indenyl + CO(2) (-123.7 kcal/mol), 2-benzopyranyl + CO (-90.7 kcal/mol), and 1,2-naphthoquinone + H (-63.2 kcal/mol). Simplified kinetic calculations using transition-state theory computed rate constants at the high-pressure limit indicate that the C(10)H(7)O + O product channels are favored at high temperatures, while the irreversible oxygen atom insertion first leading to the a10 and a10' or b10 and b10' intermediates and then to their various decomposition products is preferable at lower temperatures. Among the decomposition products, indenyl + CO(2) are always most favorable at lower temperatures, but the others, 1,2-C(10)H(6)O(2) (1,2-naphthoquinone) + H (from a10 and b10'), 1-C(9)H(7)O (1-benzopyranyl) + CO (from a10'), and 2-C(10)H(7)O (2-benzopyranyl) + O (from b10 and minor from b10'), may notably contribute or even become major products at higher temperatures.  相似文献   

19.
A computational study of gold(II) disproportionation is presented for the atomic ion as well as complexes with chloride and neutral ligands. The Au2+ atomic ion is stable to disproportionation, but the barrier is more than halved to 119 kcal/mol in an aqueous environment vs 283 kcal/mol in the gas phase. For dissociative disproportionation of chloride complexes, the loss of chlorine, either as an atom (Delta G(aq) = +20 kcal/mol) or as an anion (Delta G(aq) = +15 kcal/mol) represents the largest calculated barrier. The calculated transition state for associative disproportionation is only 9 kcal/mol above separated Au(II)Cl3(-) anions. For the disproportionation of Au(II)L3 complexes with neutral ligands, disproportionation is highly endergonic in the gas phase. Calculations imply that for synthesis of a monometallic Au(II) complex, a nonpolar solvent is preferred. With the exception of [Au(CO)3]2+, disproportionation of Au(II)L3 complexes to Au(I)L and Au(III)L3 is exergonic in solution phase for the ligands investigated. The driving force is provided by the very favorable solvation free energy of the trivalent gold complex. The solvation free energy contribution to the reaction (Delta G(solv)) is very large for small and polar ligands such as ammonia and water. Furthermore, calculations imply that choosing ligands that would yield neutral species upon disproportionation may provide an effective route to thwart this decomposition pathway for Au(II) complexes. Likewise, bulkier ligands that yield larger, more weakly solvated complex ions would appear to be desirable.  相似文献   

20.
Detailed molecular orbital calculations were directed to the cyclopropylcarbinyl radical (1), the cyclopropoxy radical (2), and the cyclopropylaminium radical cation (3) as well as their ring-opened products. Since a considerable amount of data are published about cyclopropylcarbinyl radicals, calculations were made for this species and related ring-opened products as a reference for 2 and 3 and their reactions. Radicals 1-3 have practical utility as "radical clocks" that can be used to time other radical reactions. Radical 3 is of further interest in photoelectron-transfer processes where the back-electron-transfer process may be suppressed by rapid ring opening. Calculations have been carried out at the UHF/6-31G*, MP4//MP2/6-31G*, DFT B3LYP/6-31G*, and CCSD(T)/cc-pVTZ//QCISD/cc-pVDZ levels. Energies are corrected to 298 K, and the barriers between species are reported in terms of Arrhenius E(a) and log A values along with differences in enthalpies, free energies, and entropies. The CCSD(T)-calculated energy barrier for ring opening of 1 is E(a) = 9.70, DeltaG* = 8.49 kcal/mol, which compares favorably to the previously calculated value of E(a) = 9.53 kcal/mol by the G2 method, but is higher than an experimental value of 7.05 kcal/mol. Our CCSD(T)-calculated E(a) value is also higher by 1.8 kcal/mol than a previously reported CBS-RAD//B3LYP/6-31G* calculation. The cyclopropoxy radical has a very small barrier to ring opening (CCSD(T), E(a) = 0.64 kcal/mol) and should be a very sensitive time clock. Of the three series studied, the cyclopropylaminium radical cation is most complex. In agreement with experimental data, bisected cyclopropylaminium radical cation is not found, but instead a ring-opened species is found. A perpendicular cyclopropylaminium radical cation (4) was found as a transition-state structure. Rotation of the 2p orbital in 4 to the bisected array results in ring opening. The minimum onset energy of photoionization of cyclopropylamine was calculated to be 201.5 kcal/mol (CCSD(T)) compared to experimental values of between about 201 and 204 kcal/mol. Calculations were made on the closely related cyclopropylcarbinyl and bicyclobutonium cations. Stabilization of the bisected cyclopropylcarbinyl conformer relative to the perpendicular species is much greater for the cations (29.1 kcal/ mol, QCISD) compared to the radicals (3.10 kcal/mol, QCISD). A search was made for analogues to the bicyclobutonium cation in the radical series 1 and 2 and the radical cation series 3. No comparable species were found. A rationale was made for some conflicting calculations involving the cyclopropylcarbinyl and bicyclobutonium cations. The order of stability of the cyclopropyl-X radicals was calculated to be X = CH2 > X = O > X = NH2+, where the latter species has no barrier for ring opening. The relative rate of ring opening for cyclopropyl-X radicals X = CH2 to X = O was calculated to be 3.1 x 10(6) s(-1) at 298 K (QCISD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号