首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
There are two values, -26.0 and -27.7 kcal mol(-1), that are routinely reported in literature evaluations for the standard enthalpy of formation, Delta(f) H(o)(298), of formaldehyde (CH(2)=O), where error limits are less than the difference in values. In this study, we summarize the reported literature for formaldehyde enthalpy values based on evaluated measurements and on computational studies. Using experimental reaction enthalpies for a series of reactions involving formaldehyde, in conjunction with known enthalpies of formation, its enthalpy is determined to be -26.05+/-0.42 kcal mol(-1), which we believe is the most accurate enthalpy currently available. For the same reaction series, the reaction enthalpies are evaluated using six computational methods: CBS-Q, CBS-Q//B3, CBS-APNO, G2, G3, and G3B3 yield Delta(f) H(o)(298)=-25.90+/-1.17 kcal mol(-1), which is in good agreement to our experimentally derived result. Furthermore, the computational chemistry methods G3, G3MP2B3, CCSD/6-311+G(2df,p)//B3LYP/6-31G(d), CCSD(T)/6-311+G(2df,p)//B3LYP/6-31G(d), and CBS-APNO in conjunction with isodesmic and homodesmic reactions are used to determine Delta(f) H(o)(298). Results from a series of five work reactions at the higher levels of calculation are -26.30+/-0.39 kcal mol(-1) with G3, -26.45+/-0.38 kcal mol(-1) with G3MP2B3, -26.09+/-0.37 kcal mol(-1) with CBS-APNO, -26.19+/-0.48 kcal mol(-1) with CCSD, and -26.16+/-0.58 kcal mol(-1) with CCSD(T). Results from heat of atomization calculations using seven accurate ab initio methods yields an enthalpy value of -26.82+/-0.99 kcal mol(-1). The results using isodesmic reactions are found to give enthalpies more accurate than both other computational approaches and are of similar accuracy to atomization enthalpy calculations derived from computationally intensive W1 and CBS-APNO methods. Overall, our most accurate calculations provide an enthalpy of formation in the range of -26.2 to -26.7 kcal mol(-1), which is within computational error of the suggested experimental value. The relative merits of each of the three computational methods are discussed and depend upon the accuracy of experimental enthalpies of formation required in the calculations and the importance of systematic computational errors in the work reaction. Our results also calculate Delta(f) H(o)(298) for the formyl anion (HCO(-)) as 1.28+/-0.43 kcal mol(-1).  相似文献   

2.
Various highly accurate ab initio composite methods of Gaussian-n (G1, G2, G3), their variations (G2(MP2), G3(MP2), G3//B3LYP, G3(MP2)//B3LYP), and complete basis set (CBS-Q, CBS-Q//B3LYP) series of models were applied to compute reaction enthalpies of the ground-state reaction of CO2 with Mg. All model chemistries predict highly endothermic reactions, with DeltaH(298) = 63.6-69.7 kcal x mol(-1). The difference between the calculated reaction enthalpies and the experimental value, evaluated with recommended experimental standard enthalpies of formation for products and reactants, is more than 20 kcal x mol(-1) for all methods. This difference originates in the incorrect experimental enthalpy of formation of gaseous MgO given in thermochemical databases. When the theoretical formation enthalpy for MgO calculated by a particular method is used, the deviation is reduced to 1.3 kcal x mol(-1). The performance of the methodologies used to calculate the heat of this particular reaction and the enthalpy of formation of MgO are discussed.  相似文献   

3.
Accurate barriers for the 1,3-dipolar cycloadditions of ozone with acetylene and ethylene have been determined via the systematic extrapolation of ab initio energies within the focal point approach of Allen and co-workers. Electron correlation has been accounted for primarily via coupled cluster theory, including single, double, and triple excitations, as well as a perturbative treatment of connected quadruple excitations [CCSD, CCSD(T), CCSDT, and CCSDT(Q)]. For the concerted [4 + 2] cycloadditions, the final recommended barriers are DeltaH(0K) = 9.4 +/- 0.2 and 5.3 +/- 0.2 kcal mol(-1) for ozone adding to acetylene and ethylene, respectively. These agree with recent results of Cremer et al. and Anglada et al., respectively. The reaction energy for O3 + C2H2 exhibits a protracted convergence with respect to inclusion of electron correlation, with the CCSDT/cc-pVDZ and CCSDT(Q)/cc-pVDZ values differing by 2.3 kcal mol-1. Recommended enthalpies of formation (298 K) for cycloadducts 1,2,3-trioxole and 1,2,3-trioxolane are +32.8 and -1.6 kcal mol(-1), respectively. Popular composite ab initio approaches [CBS-QB3, CBS-APNO, G3, G3B3, G3(MP2)B3, G4, G4(MP3), and G4(MP2)] predict a range of barrier heights for these systems. The CBS-QB3 computed barrier for ozone and acetylene, DeltaH(0K) = 4.4 kcal mol(-1), deviates by 5 kcal mol(-1) from the focal point value. CBS-QB3 similarly underestimates the barrier for the reaction of ozone and ethylene, yielding a prediction of only 0.7 kcal mol(-1). The errors in the CBS-QB3 results are significantly larger than mean errors observed in application to the G2 test set. The problem is traced to the nontransferability of MP2 basis set effects in the case of these reaction barriers. The recently published G4 and G4(MP2) approaches perform substantially better for O3 + C2H2, predicting enthalpy barriers of 9.0 and 8.4 kcal mol(-1), respectively. For the prediction of these reaction barriers, the additive corrections applied in the majority of the composite approaches considered lead to worse agreement with the reference focal point values than would be obtained relying only on single point energies evaluated at the highest level of theory utilized within each composite method.  相似文献   

4.
The structures and relative energies of the conformers of phenylcyclohexane, and 1-methyl-1-phenylcyclohexane have been calculated at theoretical levels including HF/6-31G, B3LYP/6-311G, MP2/6-311G, MP2/6-311(2df,p), QCISD/6-311G, and QCISD/6-311G(2df,p). The latter gives conformational enthalpy (DeltaH degrees ), entropy (DeltaS degrees ), and free energy (DeltaG degrees ) values for phenylcyclohexane that are in excellent agreement with the experimental data. The calculations for 1-methyl-1-phenylcyclohexane find a free energy difference of 1.0 kcal/mol at -100 degrees C, favoring the conformation having an axial phenyl group, that is in only modest agreement with the experimental value of 0.32 +/- 0.04 kcal/mol. The origin of the phenyl rotational profiles for the conformers of phenylcyclohexane and 1-methyl-1-phenylcyclohexane is discussed.  相似文献   

5.
The structures and energies of the reactants, products, and transition states of the initial steps in the gas-phase decomposition of dimethylnitramine (DMNA) have been determined by quantum chemical calculations at the B3LYP density-functional theory, MP2, and G2 levels. The pathways considered are NO2 elimination, HONO elimination, and nitro-nitrite rearrangement. The NO2 elimination is predicted to be the main channel of the gas-phase decomposition of DMNA in accord with experiment. The values of the Arrhenius parameters, log A=16.6+/-0.5 and Ea=40.0+/-0.6 kcal/mol, for the N-NO2 bond-fission reaction were obtained using a canonical variational theory with B3LYP energies and frequencies. The HONO-elimination channel has the next lowest activation energy of 44.7+/-0.5 kcal/mol (log A=13.6+/-0.5) and is characterized by a five-member transition-state configuration in which a hydrogen atom from one of the methyl groups is transferred to an oxygen atom of NO2. Tunneling contributions to the rate of this reaction have been estimated. The nitro-nitrite rearrangement reaction occurs via a transition state in which both oxygen atoms of NO2 are loosely bound to the central nitrogen atom, for which Rice-Ramsperger-Kassel-Marcus theory predicts log A=14.4+/-0.6 and Ea=54.1+/-0.8 kcal/mol.  相似文献   

6.
A thorough study of the reaction of singlet oxygen with 1,3-cyclohexadiene has been made at the B3LYP/6-31G(d) and CASPT2(12e,10o) levels. The initial addition reaction follows a stepwise diradical pathway to form cyclohexadiene endoperoxide with an activation barrier of 6.5 kcal/mol (standard level = CASPT2(12e,10o)/6-31G(d); geometries and zero-point corrections at B3LYP/6-31G(d)), which is consistent with an experimental value of 5.5 kcal/mol. However, as the enthalpy of the transition structure for the second step is lower than the diradical intermediate, the reaction might also be viewed as a nonsynchronous concerted reaction. In fact, the concertedness of the reaction is temperature dependent since entropy differences create a free energy barrier for the second step of 1.8 kcal/mol at 298 K. There are two ene reactions; one is a concerted mechanism (DeltaH(double dagger) = 8.8 kcal/mol) to 1-hydroperoxy-2,5-cyclohexadiene (5), while the other, which forms 1-hydroperoxy-2,4-cyclohexadiene (18), passes through the same diradical intermediate (9) as found on the pathway to endoperoxide. The major pathway from the endoperoxide is O-O bond cleavage (22.0 kcal/mol barrier) to form a 1,4-diradical (25), which is 13.9 kcal/mol less stable than the endoperoxide. From the diradical, two low-energy pathways exist, one to epoxyketone (29) and the other to the diepoxide (27), where both products are known to be formed experimentally with a product ratio sensitive to the nature of substitutents. A significantly higher activation barrier leads to C-C bond cleavage and direct formation of maleic aldehyde plus ethylene.  相似文献   

7.
The ozonolysis of acetylene was investigated using CCSD(T), CASPT2, and B3LYP-DFT in connection with a 6-311+G(2d,2p) basis set. The reaction is initiated by the formation of a van der Waals complex followed by a [4pi + 2pi] cycloaddition between ozone and acetylene (activation enthalpy DeltaH(a)(298) = 9.6 kcal/mol; experiment, 10.2 kcal/mol), yielding 1,2,3-trioxolene, which rapidly opens to alpha-ketocarbonyl oxide 5. Alternatively, an O atom can be transferred from ozone to acetylene (DeltaH(a)(298) = 15.6 kcal/mol), thus leading to formyl carbene, which can rearrange to oxirene or ketene. The key compound in the ozonolysis of acetylene is 5 because it is the starting point for the isomerization to the corresponding dioxirane 19 (DeltaH(a)(298) = 16.9 kcal/mol), for the cyclization to trioxabicyclo[2.1.0]pentane 10 (DeltaH(a)(298) = 19.5 kcal/mol), for the formation of hydroperoxy ketene 15 (DeltaH(a)(298) = 20.6 kcal/mol), and for the rearrangement to dioxetanone 9 (DeltaH(a)(298) = 23.6 kcal/mol). Compounds 19, 10, 15, and 9 rearrange or decompose with barriers between 13 and 16 kcal/mol to yield as major products formanhydride, glyoxal, formaldehyde, formic acid, and (to a minor extent) glyoxylic acid. Hence, the ozonolysis of acetylene possesses a very complicated reaction mechanism that deserves intensive experimental studies.  相似文献   

8.
The bond dissociation energies for a series of silyl peroxides have been calculated at the G2 and CBS-Q levels of theory. A comparison is made with the O-O BDE of the corresponding dialkyl peroxides, and the effect of the O-O bond strength on the activation barrier for oxygen atom transfer is discussed. The O-O bond dissociation enthalpies (DeltaH(298)) for bis (trimethylsilyl) peroxide (1) and trimethylsilyl hydroperoxide (2) are 54.8 and 53.1 kcal/mol, respectively at the G2 (MP2) and CBS-Q levels of theory. The O-O bond dissociation energies computed at G2 and G2(MP2) levels for bis(tert-butyl) peroxide and tert-butyl hydroperoxide are 45.2 and 48.3 kcal/mol, respectively. The barrier height for 1,2-methyl migration from silicon to oxygen in trimethylsilyl hydroperoxide is 47.9 kcal/mol (MP4//MP2/6-31G). The activation energy for the oxidation of trimethylamine to its N-oxide by bis(trimethylsilyl) peroxide is 28.2 kcal/mol (B3LYP/6-311+G(3df,2p)// B3LYP/6-31G(d)). 1,2-Silicon bridging in the transition state for oxygen atom transfer to a nucleophilic amine results in a significant reduction in the barrier height. The barrier for the epoxidation of E-2-butene with bis(dimethyl(trifluoromethyl))silyl peroxide is 25.8 kcal/mol; a reduction of 7.5 kcal/mol relative to epoxidation with 1. The activation energy calculated for the epoxidation of E-2-butene with F(3)SiOOSiF(3) is reduced to only 2.2 kcal/mol reflecting the inductive effect of the electronegative fluorine atoms.  相似文献   

9.
Reductive elimination of methane occurs upon solution thermolysis of kappa(3)-Tp(Me)2Pt(IV)(CH(3))(2)H (1, Tp(Me)2 = hydridotris(3,5-dimethylpyrazolyl)borate). The platinum product of this reaction is determined by the solvent. C-D bond activation occurs after methane elimination in benzene-d(6), to yield kappa(3)-Tp(Me)2Pt(IV)(CH(3))(C(6)D(5))D (2-d(6)), which undergoes a second reductive elimination/oxidative addition reaction to yield isotopically labeled methane and kappa(3)-Tp(Me)2Pt(IV)(C(6)D(5))(2)D (3-d(11)). In contrast, kappa(2)-Tp(Me)2Pt(II)(CH(3))(NCCD(3)) (4) was obtained in the presence of acetonitrile-d(3), after elimination of methane from 1. Reductive elimination of methane from these Pt(IV) complexes follows first-order kinetics, and the observed reaction rates are nearly independent of solvent. Virtually identical activation parameters (DeltaH(++)(obs) = 35.0 +/- 1.1 kcal/mol, DeltaS(++)(obs) = 13 +/- 3 eu) were measured for the reductive elimination of methane from 1 in both benzene-d(6) and toluene-d(8). A lower energy process (DeltaH(++)(scr) = 26 +/- 1 kcal/mol, DeltaS(++)(scr) = 1 +/- 4 eu) scrambles hydrogen atoms of 1 between the methyl and hydride positions, as confirmed by monitoring the equilibration of kappa(3)-Tp(Me)()2Pt(IV)(CH(3))(2)D (1-d(1)()) with its scrambled isotopomer, kappa(3)-Tp(Me)2Pt(IV)(CH(3))(CH(2)D)H (1-d(1'). The sigma-methane complex kappa(2)-Tp(Me)2Pt(II)(CH(3))(CH(4)) is proposed as a common intermediate in both the scrambling and reductive elimination processes. Kinetic results are consistent with rate-determining dissociative loss of methane from this intermediate to produce the coordinatively unsaturated intermediate [Tp(Me)2Pt(II)(CH(3))], which reacts rapidly with solvent. The difference in activation enthalpies for the H/D scrambling and C-H reductive elimination provides a lower limit for the binding enthalpy of methane to [Tp(Me)2Pt(II)(CH(3))] of 9 +/- 2 kcal/mol.  相似文献   

10.
Variable temperature (-60 to -100 degrees C) studies of the infrared spectra (3500-400 cm(-1)) of propionyl fluoride (CH3CH2CFO) and 2-methylpropionyl fluoride ((CH3)2CHCFO), dissolved in liquid xenon have been recorded. From these data, the enthalpy difference has been determined to be 329 +/- 33 cm(-1) (3.94 +/- 0.39 kJ/mol) for propionyl fluoride with the trans conformer (methyl group eclipsing the oxygen atom) more stable than the gauche form. For 2-methylpropionyl fluoride, the enthalpy difference has been determined to be 297 +/- 30 cm(-1) (3.55 +/- 0.36 kJ/mol) with the gauche conformer (methyl group eclipsing the oxygen atom) more stable than the trans form. From these DeltaH values along with assigned torsional fundamentals for both conformers and accompanying "hot bands" the potential functions governing the conformational interchange have been calculated. Utilizing the infrared data from the xenon solution and ab initio frequency predictions from MP2/6-31G* calculations, a few reassignments of the fundamentals have been made. Ab initio calculations have been carried out with several different basis sets up to MP2/6-311 + G** from which structural parameters and conformational stabilities have been determined. Additionally, force constants, infrared intensities, Raman activities, depolarization ratios, and scaled vibrational frequencies have been determined from MP2/6-31G* calculations. Adjusted structural parameters have been obtained from combined ab initio predicted values and previously reported microwave data. These parameters are compared to those obtained from either the earlier microwave and/or electron diffraction studies. Similar ab initio calculations and structural parameter determinations have been carried out for acetyl fluoride (CH3CFO) and trimethylacetyl fluoride ((CH3)3CCFO) and compared to the corresponding experimental results when appropriate.  相似文献   

11.
The binding of copper(II) to apoazurin has been probed by isothermal titration calorimetry in cholamine buffer at pH 7.0. The standard enthalpy change was determined to be -10.0 +/- 1.4 kcal/mol. Each calorimetric trace reveals an initial exothermic phase followed by an endothermic phase. The calorimetric data could be fit to a kinetic model involving a bimolecular combination of copper(II) and apoazurin in an exothermic process (k = 2 +/-1 x 103 M-1 s-1, DeltaH degrees = -19 +/- 3 kcal/mol) to form an intermediate that spontaneously converts to Cu(II)-azurin in an endothermic process (k = 0.024 +/- 0.01 s-1, DeltaH degrees = +9 +/- 3 kcal/mol). These data suggest that copper(II) first combines with apoazurin in an irreversible process to form an intermediate that converts to copper(II)-azurin in a process driven by the release of water. The overall standard free energy of copper(II) binding to apoazurin is estimated to be -18.8 kcal/mol.  相似文献   

12.
The transfer of a hydrogen atom from iron(II)-tris[2,2'-bi(tetrahydropyrimidine)], [FeII(H2bip)3]2+, to the stable nitroxide, TEMPO, was studied by stopped-flow UV-vis spectrophotometry. The products are the deprotonated iron(III) complex [FeIII(H2bip)2(Hbip)]2+ and the hydroxylamine, TEMPO-H. This reaction can also be referred to as proton-coupled electron transfer (PCET). The equilibrium constant for the reaction is close to 1; thus, the reaction can be driven in either direction. The rate constants for the forward and reverse reactions at 298 K are k1 = 260 +/- 30 M-1 s-1 and k-1 = 150 +/- 20 M-1 s-1. Interestingly, the rate constant for the forward reaction decreases as reaction temperature is increased, implying a negative activation enthalpy: DeltaH1 = -2.7 +/- 0.4 kcal mol-1, DeltaS1 = -57 +/- 8 cal mol-1 K-1. Marcus theory predicts this unusual temperature dependence on the basis of independently measured self-exchange rate constants and equilibrium constants: DeltaHcalcd = -3.5 +/- 0.5 kcal mol-1, DeltaScalcd = -42 +/- 10 cal mol-1 K-1. This result illustrates the value of the Marcus approach for these types of reactions. The dominant contributor to the negative activation enthalpy is the favorable enthalpy of reaction, DeltaH1 degrees = -9.4 +/- 0.6 kcal mol-1, rather than the small negative activation enthalpy for the H-atom self-exchange between the iron complexes.  相似文献   

13.
The heat of hydrogenation of phenylcyclobutadiene (DeltaH degrees (hyd) = 57.4 +/- 4.9 kcal mol(-1)) was determined via a thermodynamic cycle by carrying out gas-phase measurements on 1-phenylcyclobuten-3-yl cation. This leads to an antiaromatic destabilization energy of 27 +/- 5 kcal mol(-1), a difference of 9.6 +/- 4.9 kcal mol(-1) for the first and second C-H bond dissociation energies of 1-phenylcyclobutene, and an estimate of 96 +/- 5 kcal mol(-1) for the heat of formation of cyclobutadiene. These results are compared to G3, G3(MP2), and B3LYP computations and represent the first experimental measurements of the energy of a monocyclic cyclobutadiene.  相似文献   

14.
Activation barriers and reaction energetics for the three main classes of 1,3-dipolar cycloadditions, including nine different reactions, were evaluated with the MPW1K and B3LYP density functional methods, MP2, and the multicomponent CBS-QB3 method. The CBS-QB3 values were used as standards for 1,3-dipolar cycloaddition activation barriers and reaction energetics, and the density functional theory (DFT) and MP2 methods were benchmarked against these values. The MPW1K/6-31G* method and basis set performs best for activation barriers, with a mean absolute deviation (MAD) value of 1.1 kcal/mol. The B3LYP/6-31G* method and basis set performs best for reaction enthalpies, with a MAD value of 2.4 kcal/mol, while the MPW1K method shows large errors for reaction energetics. The MP2 method gives the expected systematic underestimation of barriers. Concerted and nearly synchronous transition structures are predicted by all DFT and MP2 methods. Also reported are revised estimated 0 K experimental activation enthalpies for a standard set of hydrocarbon pericyclic reactions and updated comparisons to experiment for DFT, ab initio, and multicomponent methods. B3LYP and MPW1K methods with MAD values of 1.5 and 2.1 kcal/mol, respectively, fortuitously outperform the multicomponent CBS-QB3 method, which has a MAD value of 2.3. The MAD value of the O3LYP functional improves to 2.4 kcal/mol from the previously reported 3.0 kcal/mol.  相似文献   

15.
Synthetic studies are reported that show that the reaction of either H2SnR2 (R = Ph, n-Bu) or HMo(CO)3(Cp) (1-H, Cp = eta(5)-C5H5) with Mo(N[t-Bu]Ar)3 (2, Ar = 3,5-C6H3Me2) produce HMo(N[t-Bu]Ar)3 (2-H). The benzonitrile adduct (PhCN)Mo(N[t-Bu]Ar)3 (2-NCPh) reacts rapidly with H2SnR2 or 1-H to produce the ketimide complex (Ph(H)C=N)Mo(N[t-Bu]Ar)3 (2-NC(H)Ph). The X-ray crystal structures of both 2-H and 2-NC(H)Ph are reported. The enthalpy of reaction of 1-H and 2 in toluene solution has been measured by solution calorimetry (DeltaH = -13.1 +/- 0.7 kcal mol(-1)) and used to estimate the Mo-H bond dissociation enthalpy (BDE) in 2-H as 62 kcal mol(-1). The enthalpy of reaction of 1-H and 2-NCPh in toluene solution was determined calorimetrically as DeltaH = -35.1 +/- 2.1 kcal mol(-1). This value combined with the enthalpy of hydrogenation of [Mo(CO)3(Cp)]2 (1(2)) gives an estimated value of 90 kcal mol(-1) for the BDE of the ketimide C-H of 2-NC(H)Ph. These data led to the prediction that formation of 2-NC(H)Ph via nitrile insertion into 2-H would be exothermic by approximately 36 kcal mol(-1), and this reaction was observed experimentally. Stopped flow kinetic studies of the rapid reaction of 1-H with 2-NCPh yielded DeltaH(double dagger) = 11.9 +/- 0.4 kcal mol(-1), DeltaS(double dagger) = -2.7 +/- 1.2 cal K(-1) mol(-1). Corresponding studies with DMo(CO)3(Cp) (1-D) showed a normal kinetic isotope effect with kH/kD approximately 1.6, DeltaH(double dagger) = 13.1 +/- 0.4 kcal mol(-1) and DeltaS(double dagger) = 1.1 +/- 1.6 cal K(-1) mol(-1). Spectroscopic studies of the much slower reaction of 1-H and 2 yielding 2-H and 1/2 1(2) showed generation of variable amounts of a complex proposed to be (Ar[t-Bu]N)3Mo-Mo(CO)3(Cp) (1-2). Complex 1-2 can also be formed in small equilibrium amounts by direct reaction of excess 2 and 1(2). The presence of 1-2 complicates the kinetic picture; however, in the presence of excess 2, the second-order rate constant for H atom transfer from 1-H has been measured: 0.09 +/- 0.01 M(-1) s(-1) at 1.3 degrees C and 0.26 +/- 0.04 M(-1) s(-1) at 17 degrees C. Study of the rate of reaction of 1-D yielded kH/kD = 1.00 +/- 0.05 consistent with an early transition state in which formation of the adduct (Ar[t-Bu]N)3Mo...HMo(CO)3(Cp) is rate limiting.  相似文献   

16.
The kinetics of the acid-catalyzed ring opening of naphthalene 1,2-oxide (5) in highly aqueous media to give naphthols has been measured by heat-flow microcalorimetry. The reaction enthalpy of this aromatization reaction was measured as DeltaH = -51.3 +/- 1.7 kcal mol(-)(1). The unexpectedly low reactivity of naphthalene oxide is suggested to be due to an unusually large thermodynamic stability. A crude estimate of the stabilization effect, approximately 1 kcal mol(-)(1)(not a significant stabilization), is obtained by using the measured reaction enthalpies of structurally related substrates as references. A larger value (2.7 kcal mol(-)(1)) was obtained by calculation using the B3LYP hybrid functional corrected with solvation energies derived from semiempirical AM1/SM2 calculations. The origin of this effect is discussed in terms of homoconjugative stabilization and homoaromaticity. There is a good linear correlation (with slope = 0.63) between the experimentally measured free energy of activation and the calculated enthalpy of carbocation formation in water.  相似文献   

17.
d0 Tungsten alkylidyne alkyl complex (Me3SiCH2)3W(CSiMe3)(PMe3) (4a) was found to undergo a rare, PMe3-promoted exchange with its bis(alkylidene) tautomer (Me3SiCH2)2W(=CHSiMe3)2(PMe3) (4b). Thermodynamic studies of the exchange showed that 4b is favored and gave Keq and the enthalpy and entropy of the equilibrium: DeltaH degrees = -1.8(0.5) kcal/mol and DeltaS degrees = -1.5(1.7) eu. Kinetic studies of the alpha-H migration between 4a and 4b by variable-temperature NMR gave rate constants k1 and k-1 for the reversible reactions and activation enthalpies and entropies: DeltaH1 = 16.2(1.2) kcal/mol and DeltaS1 = -22.3(4.0) eu for the forward reaction (4a --> 4b); DeltaH2 = 18.0(1.3) kcal/mol and DeltaS2 = -20.9(4.3) eu for the reverse reaction (4b --> 4a). Ab initio calculations at the B3LYP level revealed that PMe3 binds with the bis(alkylidene) tautomer relatively more strongly than with the alkylidyne tautomer and thus stabilizes the bis(alkylidene) tautomer.  相似文献   

18.
The reactivities of the cyclic ketones cycloheptanone, cyclodecanone, and cycloundecanone with dimethylsulfoxonium methylide generated from trimethylsulfoxonium iodide and base (NaH) were studied in diglyme at 130 degrees C. Oxiranes, which primarily form via the Corey reaction, lead to ring expansions to give oxetanes and oxacyclopentanes when an excess of dimethylsulfoxonium methylide is used. The Corey reaction is suppressed in the presence of excess of base, and 1,3-terminal dienes form instead (we term this reaction the Yurchenko diolefination). Our mechanistic proposal involves the deprotonation of the betaine that forms after the attack of dimethylsulfoxonium methylide on the carbonyl group of the ketone. The key step of the diolefination reaction involves a [2,3]-sigmatropic rearrangement of the ylide to a gamma-unsaturated sulfoxide with a barrier of 9.9 kcal/mol (DeltaH298, MP2/cc-pVDZ, for the cycloheptane derivative). The elimination of sulfenic acid from the gamma-unsaturated sulfoxide in the terminal step of the diolefination is associated with a higher barrier (17.3 kcal/mol) but is strongly accelerated in the presence of base. The reactivity of cyclic ketones in the Yurchenko reaction depends on the ring size; medium-sized cyclodecanone is less reactive than either cycloheptanone or cyclododecanone.  相似文献   

19.
3-oxo-Delta5-steroid isomerase (ketosteroid isomerase, KSI) catalyzes the isomerization of 5-androstene-3,17-dione (1) to 4-androstene-3,17-dione (3) via a dienolate intermediate (2-). KSI catalyzes this conversion about 13 orders of magnitude faster than the corresponding reaction catalyzed by acetate ion, a difference in activation energy (DeltaG) of approximately 18 kcal/mol. To evaluate whether the decrease in DeltaG by KSI is due to enthalpic or entropic effects, the activation parameters for the isomerization of 1 catalyzed by the D38E mutant of KSI were determined. A linear Arrhenius plot of kcat/KM versus 1/T gives the activation enthalpy (DeltaH = 5.9 kcal/mol) and activation entropy (TDeltaS = -2.6 kcal/mol). Relative to catalysis by acetate, D38E reduces DeltaH by approximately 10 kcal/mol and increases TDeltaS by approximately 5 kcal/mol. The activation parameters for the microscopic rate constants for D38E catalysis were also determined and compared to those for the acetate ion-catalyzed reaction. Enthalpic stabilization of 2- and favorable entropic effects in both chemical transition states by D38E result in an overall energetically more favorable enzymatic reaction relative to that catalyzed by acetate ion.  相似文献   

20.
The gas-phase acidity and proton affinity of thymine, cytosine, and 1-methyl cytosine have been examined using both theoretical (B3LYP/6-31+G*) and experimental (bracketing, Cooks kinetic) methods. This paper represents a comprehensive examination of multiple acidic sites of thymine and cytosine and of the acidity and proton affinity of thymine, cytosine, and 1-methyl cytosine. Thymine exists as the most stable "canonical" tautomer in the gas phase, with a DeltaH(acid) of 335 +/- 4 kcal mol(-1) (DeltaG(acid) = 328 +/- 4 kcal mol(-1)) for the more acidic N1-H. The acidity of the less acidic N3-H site has not, heretofore, been measured; we bracket a DeltaH(acid) value of 346 +/- 3 kcal mol(-1) (DeltaG(acid) = 339 +/- 3 kcal mol(-1)). The proton affinity (PA = DeltaH) of thymine is measured to be 211 +/- 3 kcal mol(-1) (GB = DeltaG = 203 +/- 3 kcal mol(-1)). Cytosine is known to have several stable tautomers in the gas phase in contrast to in solution, where the canonical tautomer predominates. Using bracketing methods in an FTMS, we measure a DeltaH(acid) for the more acidic site of 342 +/- 3 kcal mol(-1) (DeltaG(acid) = 335 +/- 3 kcal mol(-1)). The DeltaH(acid) of the less acidic site, previously unknown, is 352 +/- 4 kcal mol(-1) (345 +/- 4 kcal mol(-1)). The proton affinity is 228 +/- 3 kcal mol(-1) (GB = 220 +/- 3 kcal mol(-1)). Comparison of these values to calculations indicates that we most likely have a mixture of the canonical tautomer and two enol tautomers and possibly an imine tautomer under our conditions in the gas phase. We also measure the acidity and proton affinity of cytosine using the extended Cooks kinetic method. We form the proton-bound dimers via electrospray of an aqueous solution, which favors cytosine in the canonical form. The acidity of cytosine using this method is DeltaH(acid) = 343 +/- 3 kcal mol(-1), PA = 227 +/- 3 kcal mol(-1). We also examined 1-methyl cytosine, which has fewer accessible tautomers than cytosine. We measure a DeltaH(acid) of 349 +/- 3 kcal mol(-1) (DeltaG(acid) = 342 +/- 3 kcal mol(-1)) and a PA of 230 +/- 3 kcal mol(-1) (GB = 223 +/- 3 kcal mol(-1)). Our ultimate goal is to understand the intrinsic reactivity of nucleobases; gas-phase acidic and basic properties are of interest for chemical reasons and also possibly for biological purposes because biological media can be quite nonpolar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号