首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
The occurrence of microbial challenges in commercial poultry farming causes significant economic losses. Antibiotics have been used to control diseases involving bacterial infection in poultry. As the incidence of antibiotic resistance turns out to be a serious problem, there is increased pressure on producers to reduce antibiotic use. With the reduced availability of antibiotics, poultry producers are looking for feed additives to stimulate the immune system of the chicken to resist microbial infection. Some β-glucans have been shown to improve gut health, to increase the flow of new immunocytes, increase macrophage function, stimulate phagocytosis, affect intestinal morphology, enhance goblet cell number and mucin-2 production, induce the increased expression of intestinal tight-junctions, and function as effective anti-inflammatory immunomodulators in poultry. As a result, β-glucans may provide a new tool for producers trying to reduce or eliminate the use of antibiotics in fowl diets. The specific activity of each β-glucan subtype still needs to be investigated. Upon knowledge, optimal β-glucan mixtures may be implemented in order to obtain optimal growth performance, exert anti-inflammatory and immunomodulatory activity, and optimized intestinal morphology and histology responses in poultry. This review provides an extensive overview of the current use of β glucans as additives and putative use as antibiotic alternative in poultry.  相似文献   

2.
Although the anti-tumor and anti-infective properties of β-glucans have been well-discussed, their role in bone metabolism has not been reviewed so far. This review discusses the biological effects of β-glucans on bone metabolisms, especially on bone-resorbing osteoclasts, which are differentiated from hematopoietic precursors. Multiple immunoreceptors that can recognize β-glucans were reported to be expressed in osteoclast precursors. Coordinated co-stimulatory signals mediated by these immunoreceptors are important for the regulation of osteoclastogenesis and bone remodeling. Curdlan from the bacterium Alcaligenes faecalis negatively regulates osteoclast differentiation in vitro by affecting both the osteoclast precursors and osteoclast-supporting cells. We also showed that laminarin, lichenan, and glucan from baker’s yeast, as well as β-1,3-glucan from Euglema gracilisas, inhibit the osteoclast formation in bone marrow cells. Consistent with these findings, systemic and local administration of β-glucan derived from Aureobasidium pullulans and Saccharomyces cerevisiae suppressed bone resorption in vivo. However, zymosan derived from S. cerevisiae stimulated the bone resorption activity and is widely used to induce arthritis in animal models. Additional research concerning the relationship between the molecular structure of β-glucan and its effect on osteoclastic bone resorption will be beneficial for the development of novel treatment strategies for bone-related diseases.  相似文献   

3.
We previously described the biosynthesis, isolation, and immunosuppressive activity of the selenium-containing polysaccharide fraction isolated from the mycelial culture of Lentinula edodes. Structural studies have shown that the fraction was a protein-containing mixture of high molar mass polysaccharides α- and β-glucans. However, which of the components of the complex fraction is responsible for the immunosuppressive activity non-typical for polysaccharides of fungal origin has not been explained. In the current study, we defined four-polysaccharide components of the Se-containing polysaccharide fraction determined their primary structure and examined the effect on T- and B-cell proliferation. The isolated Se-polysaccharides, α-1,4-glucan (Mw 2.25 × 106 g/mol), unbranched β-1,6-d-glucan, unbranched β-1,3-d-glucan and β-1,3-branched β-1,6-d-glucan (Mw 1.10 × 105 g/mol), are not typical as components of the cell wall of L. edodes. All are biologically active, but the inhibitory effect of the isolated polysaccharides on lymphocyte proliferation was weaker, though more selective than that of the crude fraction.  相似文献   

4.
Alpha- and beta-linked 1,3-glucans have been subjected to conversion with p-toluenesulfonic acid (tosyl) chloride and triethylamine under homogeneous reaction conditions in N,N-dimethyl acetamide/LiCl. Samples with a degree of substitution of tosyl groups (DSTs) of up to 1.91 were prepared by applying 5 mol reagent per mole repeating unit. Hence, the reactivity of α-1,3-glucan is comparable with cellulose and starch, while the β-1,3-linked glucan curdlan is less reactive. The samples dissolve in aprotic dipolar media independent of the DSTs and possess a solubility in less polar solvents that depends on the DSTs. NMR studies on the tosyl glucans and of the peracylated derivatives showed a preferred tosylation of position 2 of the repeating unit. However, the selectivity is less pronounced compared with starch. It could be concluded that the α-configurated glycosidic bond directs tosyl groups towards position 2.  相似文献   

5.
The popular tobacco and e-cigarette chemical flavorant (−)-menthol acts as a nonselective, noncompetitive antagonist of nicotinic acetylcholine receptors (nAChRs), and contributes to multiple physiological effects that exacerbates nicotine addiction-related behavior. Menthol is classically known as a TRPM8 agonist; therefore, some have postulated that TRPM8 antagonists may be potential candidates for novel nicotine cessation pharmacotherapies. Here, we examine a novel class of TRPM8 antagonists for their ability to alter nicotine reward-related behavior in a mouse model of conditioned place preference. We found that these novel ligands enhanced nicotine reward-related behavior in a mouse model of conditioned place preference. To gain an understanding of the potential mechanism, we examined these ligands on mouse α4β2 nAChRs transiently transfected into neuroblastoma-2a cells. Using calcium flux assays, we determined that these ligands act as positive modulators (PMs) on α4β2 nAChRs. Due to α4β2 nAChRs’ important role in nicotine dependence, as well as various neurological disorders including Parkinson’s disease, the identification of these ligands as α4β2 nAChR PMs is an important finding, and they may serve as novel molecular tools for future nAChR-related investigations.  相似文献   

6.
An F-box protein, β-TrCP recognizes substrate proteins and destabilizes them through ubiquitin-dependent proteolysis. It regulates the stability of diverse proteins and functions as either a tumor suppressor or an oncogene. Although the regulation by β-TrCP has been widely studied, the regulation of β-TrCP itself is not well understood yet. In this study, we found that the level of β-TrCP1 is downregulated by various protein kinase inhibitors in triple-negative breast cancer (TNBC) cells. A PI3K/mTOR inhibitor PI-103 reduced the level of β-TrCP1 in a wide range of TNBC cells in a proteasome-dependent manner. Concomitantly, the levels of c-Myc and cyclin E were also downregulated by PI-103. PI-103 reduced the phosphorylation of β-TrCP1 prior to its degradation. In addition, knockdown of β-TrCP1 inhibited the proliferation of TNBC cells. We further identified that pharmacological inhibition of mTORC2 was sufficient to reduce the β-TrCP1 and c-Myc levels. These results suggest that mTORC2 regulates the stability of β-TrCP1 in TNBC cells and targeting β-TrCP1 is a potential approach to treat human TNBC.  相似文献   

7.
Betulinic acid (BA) is a major constituent of Zizyphus seeds that have been long used as therapeutic agents for sleep-related issues in Asia. BA is a pentacyclic triterpenoid. It also possesses various anti-cancer and anti-inflammatory effects. Current commercially available sleep aids typically use GABAergic regulation, for which many studies are being actively conducted. However, few studies have focused on acetylcholine receptors that regulate wakefulness. In this study, we utilized BA as an antagonist of α3β4 nicotinic acetylcholine receptors (α3β4 nAChRs) known to regulate rapid-eye-movement (REM) sleep and wakefulness. Effects of BA on α3β4 nAChRs were concentration-dependent, reversible, voltage-independent, and non-competitive. Site-directed mutagenesis and molecular-docking studies confirmed the binding of BA at the molecular level and showed that the α3 subunit L257 and the β4 subunit I263 residues affected BA binding. These data demonstrate that BA can bind to a binding site different from the site for the receptor’s ligand, acetylcholine (ACh). This suggests that BA may be an effective antagonist that is unaffected by large amounts of ACh released during wakefulness and REM sleep. Based on the above experimental results, BA is likely to be a therapeutically useful sleep aid and sedative.  相似文献   

8.
The development of novel anticancer agents is essential to finding new ways to treat this disease, one of the deadliest diseases. Some marine organisms have proved to be important producers of chemically active compounds with valuable bioactive properties, including anticancer. Thus, the ocean has proved to be a huge source of bioactive compounds, making the discovery and study of these compounds a growing area. In the last few years, several compounds of marine origin, which include algae, corals, and sea urchins, have been isolated, studied, and demonstrated to possess anticancer properties. These compounds, mainly from securamines and sterols families, have been tested for cytotoxic/antiproliferative activity in different cell lines. Bioactive compounds isolated from marine organisms in the past 5 years that have shown anticancer activity, emphasizing the ones that showed the highest cytotoxic activity, such as securamines H and I, cholest-3β,5α,6β-triol, (E)-24-methylcholest-22-ene-3β,5α,6β-triol, 24-methylenecholesta-3β,5α,6β-triol, and 24-methylcholesta-3β,5α,6β-triol, will be discussed in this review. These studies reveal the possibility of new compounds of marine origin being used as new therapeutic agents or as a source of inspiration to develop new therapeutic agents.  相似文献   

9.
The aim of this research is to obtain new data about the complexation between β-cyclodextrin (β-CD) and benzoic acid (BA) as a model reaction of the complex formation of hydrophobic molecules with cyclodextrins (CDs) in various media. This research may help developing cyclodextrin-based pharmaceutical formulations through the choice of the appropriate solvent mixture that may be employed in the industrial application aiming to control the reactions/processes in liquid phase. In this paper, NMR results for the molecular complex formation between BA and β-CD ([BA⊂β-CD]) in D2O-DMSO-d6 and in D2O-EtOH have shown that the stability of the complex in the H2O-DMSO-d6 varies within the experimental error, while decreases in H2O-EtOH. Changes in the Gibbs energy of BA resolvation in water and water–dimethylsulfoxide mixtures have been obtained and have been used in the analysis of the reagent solvation contributions into the Gibbs energy changes of the [BA⊂β-CD] molecular complex formation. Quantum chemical calculations of the interaction energy between β-CD and BA as well as the structure of the [BA⊂β-CD] complex and the energy of β-CD and BA interaction in vacuum and in the medium of water, methanol and dimethylsulfoxide solvents are carried out. The stability of [BA⊂β-CD] complex in H2O-EtOH and H2O-DMSO solvents, obtained by different methods, are compared. The thermodynamic parameters of the [BA⊂β-CD] molecular complexation as well as the reagent solvation contributions in H2O-EtOH and H2O-DMSO mixtures were analyzed by the solvation-thermodynamic approach.  相似文献   

10.
The problem of a growing resistance of bacteria and other microorganisms to conventional antibiotics gave rise to a search for new potent antimicrobial agents. Insect antimicrobial peptides (AMPs) seem to be promising novel potential anti-infective therapeutics. The dipeptide β-alanyl-tyrosine (β-Ala-Tyr) is one of the endogenous insect toxins exhibiting antibacterial activity against both Gram-negative and Gram-positive bacteria. Prior to testing its other antimicrobial activities, it has to be prepared in a pure form. In this study, we have developed a capillary zone electrophoresis (CZE) method for analysis of β-Ala-Tyr isolated from the extract of the hemolymph of larvae of the fleshfly Neobellieria bullata by reversed-phase high-performance liquid chromatography (RP-HPLC). Based on our previously described correlation between CZE and free-flow zone electrophoresis (FFZE), analytical CZE separation of β-Ala-Tyr and its admixtures have been converted into preparative purification of β-Ala-Tyr by FFZE with preparative capacity of 45.5 mg per hour. The high purity degree of the β-Ala-Tyr obtained by FFZE fractionation was confirmed by its subsequent CZE analysis.  相似文献   

11.
Water pollution by various toxic substances remains a serious environmental problem, especially the occurrence of organic micropollutants including endocrine disruptors, pharmaceutical pollutants and naphthol pollutants. Adsorption process has been an effective method for pollutant removal in wastewater treatment. However, the thermal regeneration process for the most widely used activated carbon is costly and energy-consuming. Therefore, there has been an increasing need to develop alternative low-cost and effective adsorption materials for pollutant removal. Herein, β-cyclodextrin (β-CD), a cheap and versatile material, was modified with methacrylate groups by reacting with methacryloyl chloride, giving an average degree of substitution of 3 per β-CD molecule. β-CD-methacrylate, which could function as a crosslinker, was then copolymerized with acrylamide monomer via free-radical copolymerization to form β-CD-polyacrylamide (β-CD-PAAm) hydrogel. Interestingly, in the structure of the β-CD-PAAm hydrogel, β-CD is not only a functional unit binding pollutant molecules through inclusion complexation, but also a structural unit crosslinking PAAm leading to the formation of the hydrogel 3D networks. Morphological studies showed that β-CD-PAAm gel had larger pore size than the control PAAm gel, which was synthesized using conventional crosslinker instead of β-CD-methacrylate. This was consistent with the higher swelling ratio of β-CD-PAAm gel than that of PAAm gel (29.4 vs. 12.7). In the kinetic adsorption studies, phenolphthalein, a model dye, and bisphenol A, propranolol hydrochloride, and 2-naphthol were used as model pollutants from different classes. The adsorption data for β-CD-PAAm gel fitted well into the pseudo-second-order model. In addition, the thermodynamic studies revealed that β-CD-PAAm gel was able to effectively adsorb the different dye and pollutants at various concentrations, while the control PAAm gel had very low adsorption, confirming that the pollutant removal was due to the inclusion complexation between β-CD units and pollutant molecules. The adsorption isotherms of the different dye and pollutants by the β-CD-PAAm gel fitted well into the Langmuir model. Furthermore, the β-CD-PAAm gel could be easily recycled by soaking in methanol and reused without compromising its performance for five consecutive adsorption/desorption cycles. Therefore, the β-CD-PAAm gel, which combines the advantage of an easy-to-handle hydrogel platform and the effectiveness of adsorption by β-CD units, could be a promising pollutant removal system for wastewater treatment applications.  相似文献   

12.
Garcinoic acid has been identified as an inhibitor of DNA polymerase β (pol β). However, no structure-activity relationship (SAR) studies of garcinoic acid as a pol β inhibitor have been conducted, in part due to the lack of an efficient synthetic method for this natural product and its analogs. We developed an efficient semi-synthetic method for garcinoic acid and its analogs by starting from natural product δ-tocotrienol. Our preliminary SAR studies provided a valuable insight into future discovery of garcinoic acid-based pol β inhibitors.  相似文献   

13.
Mushrooms with enhanced medicinal properties focus on finding such compounds that could modulate the human body’s immune systems. Mushrooms have antimicrobial, antidiabetic, antiviral, hepatoprotective, antitumor, and immunomodulatory properties due to the presence of various bioactive components. β-glucans are the major constituent of the mushroom cell wall and play a significant role in their biological activity. This review described the techniques used in the extraction of the active ingredients from the mushroom. We highlighted the structure of the bioactive polysaccharides present in the mushrooms. Therapeutic applications of different mushrooms were also described. It is interesting to note that mushrooms have the potential sources of many bioactive products that can regulate immunity. Thus, the development of functional medicinal food based on the mushroom is vital for human welfare.  相似文献   

14.
Self-assembly of a range of carboxylic acids (benzoic acid, dinicotinic acid, nicotinic acid, and isophthalic acid) with the europium complex of 5-nitro-α,α′-bis(DO3Ayl)-m-xylene (where DO3A is 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid) has been explored to establish the thermodynamics of binding in a range of solvent systems and in a range of aqueous buffer solutions. In this system, profound effects are observed as a consequence of competition by the hydroxide ion, which outcompetes even dinicotinate at high pH. In the case of isophthalate, which binds most strongly, and dinicotinate, both enthalpic and entropic contributions to binding have been identified. The europium complex with 5-nitro-α,α′-bis(DO3Ayl)-m-xylene is found to have a solution structure significantly different from the related europium complex of 5-amino-α,α′-bis(DO3Ayl)-m-xylene. It is found that phosphate binds strongly to the europium complex of the nitro derivate but not to the europium complex of amino derivative. Lactate, citrate, and pyruvate also bind strongly to 5-nitro-α,α′-bis(Eu⋅DO3Ayl)-m-xylene, and it is concluded that the solution structure of this binuclear lanthanide complex is significantly different from that of the amino-substituted complex.  相似文献   

15.
16.
Natural products are important sources for drug discovery, especially anti-tumor drugs. β-Elemene, the prominent active ingredient extract from the rhizome of Curcuma wenyujin, is a representative natural product with broad anti-tumor activities. The main molecular mechanism of β-elemene is to inhibit tumor growth and proliferation, induce apoptosis, inhibit tumor cell invasion and metastasis, enhance the sensitivity of chemoradiotherapy, regulate the immune system, and reverse multidrug resistance (MDR). Elemene oral emulsion and elemene injection were approved by the China Food and Drug Administration (CFDA) for the treatment of various cancers and bone metastasis in 1994. However, the lipophilicity and low bioavailability limit its application. To discover better β-elemene-derived anti-tumor drugs with satisfying drug-like properties, researchers have modified its structure under the premise of not damaging the basic scaffold structure. In this review, we comprehensively discuss and summarize the potential anti-tumor mechanisms and the progress of structural modifications of β-elemene.  相似文献   

17.
Cellular prion protein, a membrane protein, is expressed in all mammals. Prion protein is also found in human blood as an anchorless protein, and this protein form is one of the many potential sources of misfolded prion protein replication during transmission. Many studies have suggested that β-amyloid1–42 oligomer causes neurotoxicity associated with Alzheimer''s disease, which is mediated by the prion protein that acts as a receptor and regulates the hippocampal potentiation. The prevention of the binding of these proteins has been proposed as a possible preventative treatment for Alzheimer''s disease; therefore, a greater understanding of the binding hot-spots between the two molecules is necessary. In this study, the epitope mapping immunoassay was employed to characterize binding epitopes within the prion protein and complementary epitopes in β-amyloid. Residues 23–39 and 93–119 in the prion protein were involved in binding to β-amyloid1–40 and 1–42, and monomers of this protein interacted with prion protein residues 93–113 and 123–166. Furthermore, β-amyloid antibodies against the C-terminus detected bound β-amyloid1–42 at residues 23–40, 104–122 and 159–175. β-Amyloid epitopes necessary for the interaction with prion protein were not determined. In conclusion, charged clusters and hydrophobic regions of the prion protein were involved in binding to β-amyloid1–40 and 1–42. The 3D structure appears to be necessary for β-amyloid to interact with prion protein. In the future, these binding sites may be utilized for 3D structure modeling, as well as for the pharmaceutical intervention of Alzheimer''s disease.  相似文献   

18.
19.
Carotenoids are vital antioxidants for plants and animals. They protect cells from oxidative events and act against the inflammatory process and carcinogenesis. Among the most abundant carotenoids in human and foods is β-carotene. This carotenoid has the highest level of provitamin A activity, as it splits into two molecules of retinol through the actions of the cytosolic enzymes: β-carotene-15,15′-monooxygenase (β-carotene-15,15′-oxygenase 1) and β-carotene-9′,10′-dioxygenase (β-carotene-9′,10′-oxygenase 2). The literature supports the idea that β-carotene acts against type 2 diabetes mellitus, cardiovascular diseases, obesity, and metabolic syndrome. Due to the many processes involved in β-carotene biosynthesis and metabolic function, little is known about such components, since many mechanisms have not yet been fully elucidated. Therefore, our study concisely described the relationships between the consumption of carotenoids, with emphasis on β-carotene, and obesity and type 2 diabetes mellitus and its associated parameters in order to understand the preventive role of carotenoids better and encourage their consumption.  相似文献   

20.
Antimicrobial resistance (AMR) threatens millions of people around the world and has been declared a global risk by the World Economic Forum. One of the important AMR mechanisms in Enterobacteriaceae is the production of extended-spectrum β-lactamases. The most common ESBL, CTX-M β-lactamases, is spread to the world by CTX-M-15 and CTX-M-14. Sulbactam, clavulanic acid, and tazobactam are first-generation β-lactamase inhibitors and avibactam is a new non-β-lactam β-lactamase inhibitor. We studied that avibactam, sulbactam, clavulanic acid, tazobactam, and quercetin natural flavonoids were docked to target protein CTXM-15. Subsequently, the complexes were simulated using the molecular dynamics simulations method during 100 ns for determining the final binding positions of ligands. Clavulanic acid left CTX-M-15 and other ligands remained in the binding site after the simulation. The estimated binding energies were calculated during 100 ns simulation by the MMGBSA-MMPBSA method. The estimated free binding energies of avibactam, sulbactam, quercetin, tazobactam, and clavulanic acid were sorted as –33.61 kcal/mol, –16.04 kcal/mol, –14 kcal/mol, –12.68 kcal/mol, and –2.95 kcal/mol. As a result of both final binding positions and free binding energy calculations, Quercetin may be evaluated an alternative candidate and a more potent β-lactamases inhibitor for new antimicrobial combinations to CTX-M-15. The results obtained in silico studies are predicted to be a preliminary study for in vitro studies for quercetin and similar bioactive natural compounds. These studies are notable for the discovery of natural compounds that can be used in the treatment of infections caused by β-lactamase-producing pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号