首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The collection efficiency of metallic contaminants on four different types of silicon wafers was investigated. P, p+, n and n(+)-type polished silicon wafers were used for the substrate, and 14 metallic elements (Na, Mg, Al, K, Ca, Cr, Fe, Mn, Co, Ni, Cu, Zn, Mo and Ti) were contaminated on silicon wafer surface. Vapor-phase decomposition-droplet collection (VPD-DC) was employed as the sample preparation procedure. For the collecting solution, HNO3, HF and a mixture of HF and H2O2 were used, respectively. A liquid droplet collecting metallic contaminants during VPD-DC was analyzed by inductively coupled plasma-mass spectrometry (ICP-MS). As a result, it was found that HNO3 and HF were not suitable for collecting Cu. Copper was not collected completely in HNO3 and HF. A mixture of HF and H2O2 is the most effective to collect all of the tested metallic elements, regardless of the dopant concentration and type of substrate.  相似文献   

2.
Using a layer etching technique impurity profiles of Cu and Fe in silicon samples are measured by n.a.a. Radiation enhanced diffusion of Cu and Fe impurities from the surface into the bulk material has been observed. The samples were etched before irradiation to remove the impurity profiles caused by the sampling procedures.  相似文献   

3.
This paper describes the development of the depth profiling method of ultra trace metal impurities in polytetrafluoroethylene (PTFE) wares based on contamination-free sampling followed by acid-vapor extraction and its application to evaluate the washing method for PTFE wares. A contamination-free sampling process was achieved by scraping the surface of PTFE wares with the cleft face of a silicon wafer followed by exposing the PTFE scraped to highly pure acid-vapor. The concentration of metal impurities in extractants was determined by ICP-MS equipped with an electrothermal vaporizer (ETV-ICP-MS). The blank values of Al, Cr, Fe, Ni and Cu by the depth profiling method were 0.006, 0.004, 0.005, 0.002 and 0.003 ng, respectively. By analyzing the depth profile of beakers, the distributions of ultra trace (ng g(-1) level) metal impurities were clarified. An examination of the washing methods by the depth profiling method also clarified that exposing to acid-vapor was more effective than the acid-dipping method for the elimination of metal impurities.  相似文献   

4.
Summary The physical principles and analytical capabilities of TXRF are discussed and compared to other surface sensitive techniques. Metallic trace impurities on silicon surfaces are readily identified with detection limits down to 1011 atoms/cm2 (10–4 monolayers). Other advantages are simple sample preparation and the possibility of analyzing insulating layers without charging problems. The method has been applied to quantify coverages of Fe, Ni, Cu and Au on Si(100) surfaces, deposited from intentionally doped solutions (NH3/H2O2 and HF/NH4F). It turns out that certain metal/solution combinations cause large surface coverages on the silicon wafer, even if the metal concentration in the solution is very low (g/kg range).
Nachweis von metallischen Spurenverunreinigungen an Si(100)-Oberflächen mit der Totalreflexions-Röntgenfluorescenzanalyse (TXRF)
  相似文献   

5.
电化学微/纳加工分辨率的影响因素及对策   总被引:1,自引:0,他引:1  
The etching resolution of electrochemical fabrication technique is influenced significantly by the diffusion layer of the etchant. It has been shown that a fast etching rate can achieve higher etching resolution due to so-called heterogeneous scavenging effect, while a lower etching rate will result in rather lower etching resolution. For the latter case, the confined etchant layer technique(CELT) has been employed to improve the etching resolution. i. e., a certain redox couple which can consume the etchant homogeneously and rapidly was added to the solution. The homogeneous scavenging effect confined the etchant within a narrow layer around the electrode surface and much improved etching resolution was achieved. Using the CELT and a needle-shaped microelectrode, an etching spot of several micro-meters was obtained at silicon wafer surface.  相似文献   

6.
The concentration of more than 25 trace elements have been determined in total air particulate matter and in the size segregated fractions from the urban area of Pavia (North Italy). The PM10 fraction was also collected and analyzed. A study of the solubility in water and in physiological solution of the trace elements contained in the PM10 was also carried out. The resulting solutions were further submitted to column chromatography using Chelex 100 to perform a preliminary chemical characterization. INAA was used as the main analytical technique. ET-AAS was used for all Pb and Cd measurements and, in some cases, for the analysis of V, Mn, Cu and Ni.  相似文献   

7.
A photoassisted anodization process to fabricate arrays of uniform and straight macropores at selected areas of a Si wafer surface was developed. The front- and backside surfaces of n-type Si(100) wafers were coated with a thin Si(3)N(4) layer, and the frontside layer was micro-patterned using photolithography and reactive ion etching to form an array of microscopic openings at selected areas. The inverted pyramid-shape micropits were formed at these openings by anisotropic etching using aqueous KOH solution; these pits act as the initiation sites for the anodization to form macropores. The electrochemical etching was carried out in aqueous HF solution under illumination from the backside of the wafer, on which Au/Cr electric contact was formed following removal of the Si(3)N(4) layer. To improve the uniformity of the formation condition of the macropores at the selected area, holes were area-selectively generated by controlling the illumination condition during the anodization. For this, micropatterns were formed on the Au/Cr layer at the backside surface, which were aligned to those at the frontside surface. The parameters, such as HF concentration, current density, and wafer thickness, i.e., hole diffusion length, were optimized, and the arrays of uniform and high-aspect-ratio macropores were formed at the selected area of the domain at the silicon surface.  相似文献   

8.
This paper describes a metal–metal bonding technique using metallic Cu nanoparticles prepared in aqueous solution. A colloid solution of metallic Cu particles with a size of 54 ± 15 nm was prepared by reducing Cu2+ (0.01 M (CH3COO)2Cu) with hydrazine (0.6 M) in the presence of stabilizers (5 × 10?4 M citric acid and 5 × 10?3 M cetyltrimethylammonium bromide) in water at room temperature in air. Discs made of metallic materials (Cu, Ni/Cu, or Ag/Ni/Cu) were successfully bonded under annealing at 400 °C and pressurizing at 1.2 MPa for 5 min in H2 gas with help of the metallic Cu particle powder. Shear strength required for separating the bonded discs was 27.9 ± 3.9 for Cu discs, 28.1 ± 4.1 for Ni/Cu discs, and 13.8 ± 2.6 MPa for Ag/Ni/Cu discs. Epitaxial crystal growth promotes on the discs with a good matching for the lattice constants between metallic nanoparticles and metallic disc surfaces, which leads to strong bonding. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Submicron semiconductor manufacturing requires ultra-clean processes and materials to achieve high product yields. It is demonstrated that electrothermal evaporation (ETV) in a graphite furnace coupled with ICPMS offers a new possibility for a fast simultaneous analysis of eight elements with detection limits below 0.2 ng/g in conc. hydrofluoric acid and buffered oxide etch (ammonium fluoride/hydrogen fluoride mixture). ETV-ICPMS also comprises significant improvements in the analysis of metal contamination on silicon wafer surfaces with respect to currently used methods. The contaminants on the surface are usually analyzed by total reflexion X-ray fluorescence spectrometry (TXRF) or dissolved by HF vapour (vapour phase decomposition; VPD) or a mixture of hydrofluoric acid and hydrogen peroxide (droplet surface etching, DSE) and analyzed by GFAA or TXRF. ETV-ICPMS combines the advantages of both analytical methods: the multielemental advantage of TXRF and the possibility to analyze light elements like Al, Mg, Na which may not be analyzed by TXRF. With VPD/DSE-ETV-ICPMS detection limits between 0.2 and 2×109 atoms cm?2 on a 6″ wafer have been achieved in a simultaneous analysis of eight elements. The main advantage of ETV-ICPMS versus conventional ICPMS in both applications — chemical and surface analysis — is its capability to analyze Fe in the sub-ng/g range. As Fe is one of the most important impurities in semiconductor manufacturing ETV-ICPMS is much more useful for semiconductor applications than low-resolution ICPMS. For the present application potassium iodide was used as a modifier. It enhances the sensitivity by a factor of 3–4 and improves the reproducibility significantly.  相似文献   

10.
An analysis methodology for the metallic contamination control of Ge wafer substrates has been developed and evaluated for six elements (K, Ca, Cr, Fe, Ni and Zn). Detection limits (DL) of Direct-total reflection X-ray fluorescence spectrometry (D-TXRF) analysis on Ge wafers have been determined and found to be at the E10 at/cm2 level. The values have been found to be a factor between 1 and 3 higher than on Si wafers, exclusively caused by differences in the background intensity. Additionally, a preconcentration procedure based on the Droplet sandwich etch (DSE) method has been developed. This method relies on the transfer of the surface and subsurface contaminants from the wafer to the liquid phase by wet chemical etching. Application of the DSE method on reference Ge wafers followed by analysis of the etch liquid by TXRF resulted in recovery rates (RR) of 40%. In an optimization study, it was found that the main DSE method parameters had limited influence on the RR. However, a detection efficiency study clearly demonstrated an underestimation by the TXRF analysis. An independent analysis for Ca, Cr, Fe and Zn by GF-AAS resulted in RR varying at approximately 100%. By internal standardization with the element La for the TXRF analysis, recovery rates could be increased to the 60% level. This underestimation by TXRF may find an origin in a matrix effect caused by the Ge etch products. By application of the developed DSE-TXRF method, DL at the E9 at/cm2 level could be realized, with values, which are at least one order of magnitude lower compared to the DL of D-TXRF on Ge wafers.  相似文献   

11.
High performance adsorbent is expected to be synthesized for the removal of Ni and Cu ions from strong alkaline solution used in the surface etching process of Si wafer. Fibrous adsorbent was synthesized by radiation-induce emulsion graft polymerization onto polyethylene nonwoven fabric and subsequent amination. The reaction condition was optimized using 30 L reaction vessel and nonwoven fabric, 0.3 m width and 18 m long. The resulting fibrous adsorbent was evaluated by 48 wt% NaOH and KOH contaminated with Ni and Cu ions, respectively. The concentration levels of Ni and Cu ions was reduced to less than 1 μg/kg (ppb) at the flow rate of 10 h?1 in space velocity. The life of adsorbent was 30 times higher than that of the commercialized resin. This novel adsorbent was commercialized as METOLATE® since the ability of adsorption is remarkably higher than that of commercial resin used practically in Si wafer processing.  相似文献   

12.
An ion exchange method has been developed for the separation of uranium from trace level metallic impurities prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES) in uranium materials. Selective separation of uranium from trace level metallic impurities consisting Cr, Co, Cu, Fe, Mn, Cd, Gd, Dy, Ni, and Ca was achieved on anion exchange resin Dowex 1 × 8 in sulphate medium. The resin (100–200 mesh, in chloride form) was packed in a small Teflon column (7.8 cm × 0.8 cm I.D.) and brought into sulphate form by passing 0.2 N ammonium sulphate solution. Optimum experimental conditions including pH and concentration of sulphate in the liquid phase were investigated for the effective uptake of uranium by the column. Uranium was selectively retained on the column as anionic complex with sulphate, while impurities were passed through the column. Post column solution was collected and analyzed by ICP-OES for the determination of metallic impurities. Up to 2,500 μg/mL of uranium was retained with >99% efficiency after passing 25 mL sample through the column at pH 3. Percentage recoveries obtained for most of the metallic impurities were >95% with relative standard deviations <5%. The method established was applied for the determination of gadolinium in urania–gadolinia (UO2–Gd2O3) ceramic nuclear fuel and excellent results were achieved. Solvent extraction method using tributylphosphate (TBP) as extractant was also applied for the separation of uranium in urania–gadolinia nuclear fuel samples prior to the determination of gadolinium by ICP-OES. The results obtained with the present method were found very comparable with those of the solvent extraction method.  相似文献   

13.
An isotope dilution mass spectrometric (IDMS) method with the thermal ionization (TI) technique has been developed for the determination of trace impurities of Cr, Fe, Ni, Cu, Zn, Ag, Cd, Tl, Pb, Th, and U in high-purity HF (50% by weight) used in the semiconductor industry. The evaporation step of the HF solution was carried out in an apparatus which did not significantly contribute to contaminations of the heavy metals to be analysed. This apparatus allowed fast evaporation of the HF solution of up to 200 ml/h and therefore also a fast trace heavy metal/matrix separation was carried out. The evaporation step was also used in connection with inductively coupled plasma mass spectrometry (ICP-MS) when applying the isotope dilution technique and an external calibration for quantification, respectively. The detection limits for TI-IDMS were (in pg/g): Cr=30, Fe=400, Ni=70, Cu=20, Zn=1100, Ag=70, Cd=10, Tl=1, Pb=16, Th=3, and U=1. With ICP-MS in combination with the evaporation step, detection limits of less than 50 pg/g have been achieved for Cr, Ni, and Zn and of <5 pg/g for the other elements except Fe, which could not be determined in concentrations less than 100 ng/g. On the other hand, the detection limits were much higher when the HF matrix was not removed before measuring by ICP-MS. A comparison of the different ICP-MS methods (isotope dilution technique and external calibration for both HF evaporated samples and those with HF matrix) with the results of TI-IDMS has been carried out. An excellent agreement was achieved between the results of TI-IDMS and the two ICP-MS methods using the HF evaporation step, whereas the ICP-MS techniques without HF evaporation essentially deviated from these results. Fe was the only trace element of all investigated heavy metals which could only be analysed by TI-IDMS in high purity HF in a concentration of about 3 ng/g. Although ICP-MS with isotope dilution and external calibration resulted in comparable analytical data, the ICP-IDMS method has some practical advantages such as time-saving and more reliable results.  相似文献   

14.
Henssge A  Acker J  Müller C 《Talanta》2006,68(3):581-585
The wet chemical etching of silicon by concentrated HF-HNO3 mixtures in solar and semiconductor wafer fabrication requires the strict control of the etching conditions. Surface morphology and etch rates are mainly affected by the amount of dissolved silicon, that is continuously enriched in the etching solution with each etching run. A fast and robust method for the titrimetric determination of the total dissolved silicon content out of the concentrated etching solution is presented. This method is based on the difference between the two equivalence points of the total amount of acid and the hydrolysis of the hexafluorosilicic anion. This approach allows a silicon determination directly from the etching process in spite of the presence of dissolved nitric oxides in the etching solution. The influences of different acid mixing ratios and of the etching solution density depending on the silicon content is considered and discussed in detail.  相似文献   

15.
分别以氢氧化钠(NaOH)、碳酸钠(Na2CO3)和磷酸钠(Na3PO4.12H2O)作为刻蚀剂,研究刻蚀浓度、温度(θ)、刻蚀时间(te)和添加剂(异丙醇(IPA)、碳酸氢钠(NaHCO3))对晶体硅表面织构化的影响,用场发射扫描电子显微镜表征织构效果.通过优化工艺,可得到较低的平均表面反射率(Rav),按使用的刻蚀剂分别为:9.70%(NaOH)、9.76%(Na2CO3)和8.63%(Na3PO4.12H2O).据此分析了Rav和织构表面形貌之间的关系.发现添加剂IPA在Na3PO4.12H2O或Na2CO3与NaOH 3种刻蚀剂溶液中均可明显起改善织构效果.NaHCO3在某些方面具有与IPA的相同作用,同时又能促进大金字塔的形成.文中同时初步提出有关刻蚀过程的机理.  相似文献   

16.
T Ponnuswamy  J J Chen  F Xu  O Chyan 《The Analyst》2001,126(6):877-880
Potentiometric detection of trace levels of metallic contamination onset in hydrofluoric acid using a silicon-based sensor in conjunction with two non-contaminating reference electrode systems is presented in this paper. In the first case, conductive diamond was used as a non-contaminating reference electrode. Cyclic voltammetry and open-circuit potential experiments demonstrated the feasibility of using a conductive diamond film electrode as a quasi-reference electrode in the HF solution. In the second case, a dual silicon electrode system was used with one of the silicon-based electrodes protected with an anion permeable membrane behaving as the quasi-reference electrode. The dual silicon sensing electrode system possessed an additional operational advantage of being unaffected by the solution acidity. Though both sensing configurations were able to detect the metal ion contamination onsets at the parts-per-trillion to parts-per-billion levels, the dual silicon electrode design showed a greater compatibility for the on-line detection of metallic impurities in HF etching baths commonly used in semiconductor processing.  相似文献   

17.
方景礼 《化学学报》1983,41(6):505-513
In the previous paper, it was reported that a sudden decrease down to -0.6V and lower in stationary potential was observed from the stationary potential-time curve and the reaction of electroless nickeling could be induced by metallic iron catalyst when it was in contact with substrate metallic copper. In this paper, AES and XPS surface analysis and depth profile technique was employed to investigate the surface and depth distribution of Ni, Cu, Fe and P in the nickel coating deposited on the substrate metal. The experimental results showed that there was a thin adsorption layer consisting of C, S and Cl. The pure electroless nickel deposition, its Ni/P ratio being about two, existed under the adsorption layer. A layer with rapidly changed Ni/P ratio occurred close to the surface of substrate metal, under this layer the substrate metal was alloyed with Ni and P, thus becoming Cu-Ni-P alloy. The ratio of components in this alloy was found to be Cu:Ni:P=56:36:5. This fact explained why the electroless nickel deposition can preferably adhered to the substrate metal. In inducing process, Fe was not detected by AES from the substrate metal and nickel deposition. Thus it showed that the inducing reaction takes place without the deposition of inducing metal.  相似文献   

18.
Currently, a conventional two-step method has been used to generate black silicon (BS) surfaces on silicon substrates for solar cell manufacturing. However, the performances of the solar cell made with such surface generation method are poor, because of the high surface recombination caused by deep etching in the conventional surface generation method for BS. In this work, a modified wet chemical etching solution with additives was developed. A homogeneous BS layer with random porous structure was obtained from the modified solution in only one step at room temperature. The BS layer had low reflectivity and shallow etching depth. The additive in the etch solution performs the function of pH-modulation. After 16-min etching, the etching depth in the samples was approximately 200 nm, and the spectrum-weighted-reflectivity in the range from 300 nm to 1200 nm was below 5%. BS solar cells were fabricated in the production line. The decreased etching depth can improve the electrical performance of solar cells because of the decrease in surface recombination. An efficiency of 15.63% for the modified etching BS solar cells was achieved on a large area, p-type single crystalline silicon substrate with a 624.32-mV open circuit voltage and a 77.88% fill factor.  相似文献   

19.
Matrix separation by reductive precipitation with hydrazine allows the ET-AAS and flame-AAS determination of Al, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb and V in high-purity TeO2 and Bi2O3.  相似文献   

20.
The destructive technique for the determination of the depth concentration profile in metallic glasses of composition B20FexNi80–x (for x from 40 to 70) is presented. The etching technique with HNO3 has been proposed for removing surface layers of the thickness from 1 to 12 m. In the residual surfaces the concentration of Fe and Ni has been determined by the PIXE method with 1.4 MeV4He+ ions of the JINR Van de Graaff accelerator. With an emphasis on the solution of matrix effects in Fe–Ni systems, empirical correction methods have been applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号