首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparison of the one-and two-photon absorption spectra of triphenylene in n-heptane single crystals at 1.6. K reveals that the lowest singlet state (S1) is of 1A′1 symmetry while the second singlet state(S2) has 1A′2 symmetry, in contradiction with the commonly accepted assignment.  相似文献   

2.
The kinetics of photophysical processes has been measured in stilbene solutions in the temperature range between ?40°C and 20°C. The population of the S1 level excited by two-photon absorption (TPA) and of secondary populated levels has been investigated using a probe beam method. It was found an energy barrier ΔE = 5 × 102 cm?1 of the thermically activated transition S1 → 1′. The rate parameter of this transition is determined to be k?111′, ≈ 2 ps at very high temperatures.  相似文献   

3.
We present the S1 → S0 fluorescence spectrum, between 740 and 940 nm, of azulene solutions (10?3 M in methanol) excited with a Q-switched ruby laser. The nitrogen-laser excited S2 → S1 fluorescence spectrum, between 700 and 930 nm, is also reported. The transient S1 → Sn spectrum between 500 and 650 nm was studied, using synchronous nitrogen laser and dye laser excitation. The S5 (1B1(3)) state of azulene was found to be located at 45500 cm?1 and the cross section σ25 of the transient absorption S2 → S5 is estimated to be 3 × 10?18 cm2/molecule.  相似文献   

4.
Picosecond spectroscopy, following the buildup of T1 → Tn absorption (maximum at 420 nm), shows that the T1 state of 1,5-diazabicyclo[3,3,0]octa-3,7-diene-2,6-diones(9,10-dioxa-anti-bimanes) is formed within about 10 ps. The nature of the T1 state was confirmed by decay rates of T1 → Tn absorption in acetonitrile (n = 0.375 cP, knr = 4.5 × 105 s?1), 1,2-ethanediol (n = 26 cP, knr = 1.5 × 104 s?1 and glycerol (n = 1400 cP, knr = 1.3 × 103 s?1). The very fast intersystem crossing is ascribed to the proximity of a 3nπ* state to the ππ* (S1 state produced by light absorption (El-Sayed rule).  相似文献   

5.
The nonlinear optical properties of solutions of (2,3,9,10,16,17,23,24-tetra-15-crown-5-phthalocyaninato)indium(III) [(15C5)4Pc]In(OH) in tetrachloroethane (TCE) have been studied by the z-scan method. It has been found that a nonlinear optical response is due to supramolecular associates formed in a tetrachloroethane solution by heating to 90°C/slow cooling to room temperature cycling. The formation of the supramolecular associates has been studied by atomic force microscopy (AFM) and electronic absorption spectroscopy (EAS). It has been shown that a single thermal treatment of [(15C5)4Pc]In(OH) solutions in TCE results in the predominant formation of dimers, as evidenced by both a short-wavelength shift of the Q-absorption band of the monomeric complex (λmax = 692 nm) to the band of λmax = 653 nm and height doubling of molecular entities as measured by AFM. The dimers are responsible for the two-photon absorption measured in the femtosecond range, which has a relatively high cross section of σ2 = 1.38 × 10?46 cm4 s/(molecule, photon) or 1.38 × 104 GM. According to the AFM data, three cycles of heat treatment of the solution leads to the formation of supramolecular assemblies of about 200 nm length. The optical spectrum exhibits long-wavelength absorption at λmax = 841 nm and the long-wavelength edge near 1300 nm. In the case of nanosecond 1064-nm laser irradiation, the linear absorption S 0S 1 is primary, having the cross section of σ0 = α0/N = 2.3 × 10?20 cm2. The known high quantum yield (close to unity) of triplet states of indium phthalocyanines suggests that the main nonlinear optical effect is determined by intersystem crossing S 1T 1 and triplet-triplet absorption T 1T 2. The absorption cross section is σ T-T = 1.14 × 10?19 cm2.  相似文献   

6.
In this paper we report on the measurements of the absorption spectra of large van der Waals complexes in planar supersonic jets. The absorption spectra and the fluorescence excitation spectra of the complexes of 9,10-dichloroanthracene (DCA) with Ar atoms are reported for the S0 → S1(0) vibrationless transition of DCA·Arn (n = 1?6), and from the S0 → S1 (1390 cm?1) transition of DCA·Arn (n = 1?4). Information on the structure of these complexes was inferred from the additivity of the spectral shifts per added rare-gas atom (ASSRA) for DCA·ARn (n = 1.2) and from deviations from the ASSRA for CDA-Arn (n = 3?6). The vibrational predissociation (VP) dynamics of DCA-Arn (n = 1?3) complexes was interrogated by fluorescence quantum yield, Y, measurements. The value of the S1 (1390 cm?1) state of DCA·Arn (n = 1?3) exhibits a dramatic enhancement relative to that of DCA. Utilizing the dependence of Y on the excess vibrational energy of bare DCA, we were able to estimate the internal energy of the fragments resulting from VP of DCA·Arn of DCA·Arn (n = 1?3). An upper limit of ? 100 ps was estimated for the VP (and/or vibrational energy redistribution) lifetime from the S1 (1390 cm?1) state of DCA·Ar3.  相似文献   

7.
The two-photon excitation spectrum of a benzene single crystal at 4.2 K has been recorded in the region of the second absorption system. The onset of two-photon absorption occurs near 46 500 cm?1 (quoted as a two-photon frequency). The spectrum has the appearance of a forbidden transition in that the system begins with weak lines which become dominated by an intense continuum at higher energies. The two-photon cross section at 55 000 cm?1 (the limit reached in this study) is about 200 times greater than at 47 490 cm?1 although the peak of this strongly allowed system has not yet been reached. The fwhm of the bands near 47 000 cm?1 is 280 cm?1, the same as in the one-photon spectrum at these energies. The polarisation ratio is much the same over the entire energy range, and is consistent with the two-photon operators (xz, yz) or (zz). An analysis of all the data available from the one- and two-photon spectra suggests that the transition is 1B1u1A1g in which the vibronic intensity is derived from the 1E1u state in the one-photon and 1E1g in the two-photon spectrum.  相似文献   

8.
The lineshape function for the S0 → T1 absorption in 1,4-dibromonaphthalene (DBN) is analyzed in terms of exchange theory. It is shown that the dominant optical dephasing mechanism for the electric dipole transition to the k = 0 state in the band results from the absorption and emission of a low energy optic phonon. This process dephases the optical absorption because of frequency differences of the phonon in the ground and excited state. In addition, it is shown how to extract the energy of the phonon responsible for dephasing, the phonon absorption rate, and the lifetime in the phonon promoted state from the data. The analysis of the data for DBN shows that very little dephasing of the optical transition occurs before ≈ 15 K but from 15 K to ≈ 40 K the singlet-triplet transitions to site I (20192 cm?1) and site II (20245 cm?1) are dephased by absorption and emission of an ≈ 38 cm?1 and 45 cm?1 phonon respectively. The phonon absorption rates by the k = 0 state in the exciton band are similar for both sites being 5 × 106 s?1 and 3 × 105 s?1 at 4 K and 7 × 1011 s?1 and 4 × 1011 s?1 at 30 K for site I and II respectively. Finally, the lifetimes in the phonon promoted state for sites I and II are 0.23 and 0.28 ps over the range 15–40 K.  相似文献   

9.
Optical hole-burning has been observed in the S1 ← S0 absorption of zinc porphin in n-octane by selective depletion of the ground state population and storage in the mestastable triplet state. In this way the homogeneous linewidths of S1 ← S0 for molecules in A and B sites of n-octane were measured between 1.6 and 4.5 K. Thermally induced dephasing was observed for B-site molecules with an activation energy of 14 cm?, equal to the separation between the two electronic components of S1.  相似文献   

10.
The two-photon excitation spectrum of toluene-h8 and toluene-d8 vapor has been recorded under low resolution (1 cm?1) in the region of the S1 ← S0 (1B21A1) transition. Although the electronic transition is formally allowed in two-photon spectroscopy, a large fraction of intensity exists in a subsystem induced by the out-of-phase CC stretching vibration ν14 (b2). Band contours associated with each of the two assigned tensor components of the transition are identified and partially analyzed by comparison with the two-photon contours of fluorobenzene.  相似文献   

11.
The UV emission of Cl2 from a new valence-shell state having 0+u symmetry (Tc ≈ 59774 cm?1, rc ≈ 3.0 Å) was observed by focusing ≈ 500 nm laser radiation to gaseous chlorine. Excitation was achieved by virtual two-photon absorption from the B 3Π0+u state formed by single-photon absorption stepwisely. The emission spectra showed transitions to the ground state as well as to the repulsive grade estate dissociating to Cl2P) + Cl(2P) products.  相似文献   

12.
T1 ← S0 absorption and T1 → S0 phosphorescence spectra of neat cystalline hexachloroacetone have been analyzed at 4.2°K. From the lifetime and energy the upper state is assigned as 3*. The spectra are sharp compared to other aliphatic ketones, with the 0-0 band at 26 248 ± 2 cm ?1. The phosphorescence shows two strong progressions; one involving the CO stretching mode at 1784 cm?1 (x), the other a long progression of at least 8 bands involving a mode at 143 cmt-1 (a). The 143 cm?1 progression forming mode can best be asigned to the CO out-of-plane wagging vibration. The absorption shows the same two strong progressions, reduced in frequency to 1270 cmt-1 and 123 cm?1, respectively, but with the progression in mode a broadened with increasing n. The broadening is interpreted as arising from inversion doublets; the close harmonicity up to n = 5 allowing the potential barrier to inversion to be estimated as > 700 cm?1. A feature of the spectra is the absence of low frequency torsional modes suggesting lack of pseudo Jahn-Teller distortion of the triplet state potential surface. For comparison, the phosphorescence of crystalline hexafluoroacetone was also studied at 4.2°K. The spectrum exhibits broad bandedness with a 00 band tentatively assigned at 26 870 ± 20 cm?1.  相似文献   

13.
In this paper we present the results of an experimental study of intermolecular electronic energy transfer (EET) from the short-lived Second excited singlet state of rhodamine 6G (R6G) to the ground state of 2,5-bis [5′-tert-butyl-2-benzoxazolyl] thiophene (BBOT). The S2 state of the donor was excited by sequential, time-delayed, two-photon excitation (STDTPE) utilizing the second harmonic and the first harmonic of a mode-locked Nd3+: glass laser, while the EET process was interrogated by monitoring the enhancement of the S1 → S0 fluorescence of BBOT. The enhancement of the fluorescence intensity of BBOT was found to be linear in the energies of the two exciting pulses, and linear in the concentration of the energy acceptor (over the BBOT concentration range of (0.3–7) × 10?5 M), which is in accord with the predictions of the Forster—Dexter mechanism for resonant EET from an ultrashort-lived donor state at low acceptor concentrations. Quantitative measurements of the S2 → S0 fluorescence yield in R6G solution directly excited by STDTPE and of the S1 → S0 fluorescence of BBOT from R6G + BBOT solutions resulting from EET led to the values of YD(S2 → S0) = (2.1 ± 0.5) × 10?6 for the emission quantum yield of the S2 state of R6G and τrD(S2) ≈ 3 × 10?14 s for the lifetime of the metastable S2 state of this molecule.  相似文献   

14.
General formulas are derived for the intensity and the degree of polarization of the Sm-fluorescence emission (m ? 2) of a sample excited by the sequential two-photon excitation process (Sn ← S1 ← S0, n ? 2) with plane-polarized pulsed light. They show how the Sm-fluorescence intensity and anisotropy depend on the relative orientation of the relevant transition dipoles within a molecule and on the degree of rotational relaxation of molecules in the intermediate state (S1) and in the Sm state (for the case m = n), or in the Sn → Sm process (mn).  相似文献   

15.
Equilibrium geometries for the electronic ground and first excited singlet states of 1,1'-binaphthyl have been calculated by minimization of the total energy with respect to all internal coordinates. Using these results, an interpretation of the fluorescence S1→ S0 and absorption spectra Sm ← S0 and Sn ← S1 in rigid and fluid solutions is given.For the first time the equilibrium geometry of the first excited singlet state of 1, 1′-binaphthyl has been calculated. On excitation to the S1 state the dihedral angle θ between the two naphthalene moieties is de- creased from 61 ° to 41 °. A detailed survey of CH bond lengths in the S0 and S1 states has been given. This result should be of particular importance for the theoretical treatment of radiationless transitions.Using equilibrium geometries for the S0 and S1 states a satisfactory interpretation of the Sm ← S0 and Sn ← S1 absorption spectra as well as of the fluorescence spectra in fluid and rigid solutions can be given. Concerning the Sn ← S1 absorption spectrum in fluid solution, the calculations predict a strong absorption (A ← B transition) in the still uninvestigated region of energies lower than 11000 cm?1.From the results of this paper and of other calculations it can be concluded that the Warshel-Karplus method yields reliable equilibrium geometries for electronic ground and excited states of unsaturated hydrocarbons [22,23].  相似文献   

16.
We examine the nonlinear optical properties of solutions of 9,10-anthraquinone, 1,4-dihydroxy-anthraquinone, 5,8-dichloro-1,4-dihydroxy-anthraquinone and 1,4-bisethylamino-anthraquinone by means of the intensity-dependent transmission and the Z-scan method with 532 nm 8 ns pulses. The results demonstrated that the 9,10-anthraquinone displayed a two-photon absorption (TPA) character. The molecular TPA cross section of this compound is estimated as σ2 = 7.22 × 10?19 cm4/GW or σ2 = 26.96 × 10?48 cm4/photon/s, respectively, and an essential state of ‘m1Ag’, which should be located near the 2ω virtual transition state, is predicted. On the other hand, the effective excited-state nonlinear refractive coefficients n2eff of these anthraquinones are found to be ~10?10 esu, which are comparable with those highly conjugated planar molecules of tetrabenzporphyrins and phthalocyanines.  相似文献   

17.
The temperature dependence of the fluorescence and fluorescence excitation spectra of all-trans diphenyl hexathene (DPH) and octatetraene (DPO) in six solvents confirms the S1(1Ag*) and S2(1Bu*) state assignment, and determines their energy difference ΔE. The S1 fluorescence rate parameter kF depends on ΔE, the solvent refractive index n, the S2 (n = 1) fluorescence rate parameter kF20 (2.23 × 108 s?1 for DPH, 2.33 × 108 s?1 for DPO), and the S2-S1 coupling matrix element V (745 cm?1 for DPH, 500 cm?1 for DPO). The S1 fluorescence is induced by 1Bu*-1Ag* potential interaction (PI), via a bu vibrational mode (≈ 900 cm?1), and not by vibronic coupling. The main S1 radiationless transition, rate parameter kR, is thermally-activated internal rotation through an angle θ about the central ethylenic bond(s). The PI distorts the S1 (θ) potential surface and thus influences kR.  相似文献   

18.
The study has focused on polyvinylcarbazole (PVK) composites with graphene. It has been shown that there is a noticeable nonadditive shoulder on the long-wavelength edge of the optical absorption of PVK in these samples, which can be attributed to the formation of a charge-transfer complex between PVK as a donor and graphene as an acceptor. The formation of the complex causes a significant nonlinear optical effect in the PVK/graphene composite. The revealed increase in both the nonlinearity coefficient with increasing laser intensity and the cross section with increasing incident energy density is due to the formation of the graphene radical anion, an additional species contributing to nonlinear absorption, with an increase in the radiation energy density. Nonlinear optical properties of PVK composites with graphene isolated from a solution in tetrachloroethane after 1.5-h centrifugation (sample 1) have been considered. It has been suggested that a significant decrease in optical transmission of laser radiation by the composite T OA = 0.4 at an energy density at focus of 502 J/cm2 is due to the formation of the PVK/graphene charge-transfer complex responsible for the nonadditive shoulder on the long-wavelength optical absorption edge of PVK. During photoexcitation of graphene in the PVK/graphene composites at a laser wavelength of 1064 nm, mobile holes are generated in PVK, indicating the formation of graphene radical anions as a result of charge transfer from PVK to photoexcited graphene. The observed increase in both β with an increase in the laser radiation intensity and the cross section (σexc — σ0) with an increase in the incident energy density may be due to either the contribution of nonlinear transitions (S 0S 2, S 0S 1S 2, T 1T 2) or the formation of the additional species, the graphene-· radical anions, participating in nonlinear absorption by increasing the energy density at the focus (F foc, J/cm2).  相似文献   

19.
Metal (M)-sulfur cluster anions (M = Ag, Fe and Mn) have been studied using photoelectron spectroscopy (PES) with a magnetic-bottle type time-of-flight electron spectrometer. The MnS m ? cluster anions were formed in a laser vaporization cluster source. For Ag-S, the largest coordination number of Ag atoms (n max) is generally expressed as n max =2m ? 1 in each series of the number of S atoms (m). For Fe?S and Mn?S, it was found that the stable cluster ions are the ones with compositions of n=m and n=m±1. Their electron affinities were measured from the onset of the PES spectrum. For Ag?S, the EAs of Ag1Sm are small and around 1 eV, whereas those of AgnSm (n ≥ 2) become large above 2 eV. The features in the mass distribution and PES suggest that Ag2S unit is preferentially formed with increasing the number of Ag atoms. For Fe?S and Mn?S, the PES spectra of FenS m ? /MnnS m ? show a unique similarity at n ≥ m, indicating that the Fe/Mn atom addition to FenS n ? /MnnS n ? has little effect on the electronic property of FenSn/MnnSn. The PES spectra imply that the FenSn cluster is the structural framework of these clusters, as similarly as the determined structure of the FenSn cluster in nitrogenase enzyme.  相似文献   

20.
Absorption transitions to vibrational levels close to the A state dissociation limit of ICI have been examined using a two-photon sequential absorption technique. The discrete rotational structures of I37 Cl bands to within 0.7 cm?1 of the limit have been selectively excited and analysed. A value of 17557.514 ± 0.030 cm?1 has been obtained for the I(2Po32) + Cl(2Po32) dissociation energy De, relative to the minimum of the ICI ground state potential well. The two-photon technique can be used to excite and display separately the high resolution absorption spectra of different isotopic species of a molecule which are contained in a mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号