首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein, an approach is reported to prepare porous a carbon/Ge (C/Ge) hybrid. In this hybrid, Ge nanoparticles are closely embedded in a highly conductive and flexible carbon matrix. Such a hybrid features a high surface area (128.0 m2 g?1) and a hierarchical micropore–mesopore structure. When used as an anode material in lithium‐ion batteries (LIBs), the as‐prepared hybrid [C/Ge (60.37 %)] exhibits an improved lithium storage performance with regard to its capacity and rate capability compared to its counterparts. More specifically, it can maintain a specific capacity as high as 906 mAh g?1 at a high current density of 0.6 A g?1 after 50 cycles. The excellent lithium storage performance of the C/Ge (60.37 %) sample can be attributed to synergetic effects between the carbon matrix and Ge nanoparticles. The method we adopted is simple and effective, and can be extended to fabricate other nanomaterials.  相似文献   

2.
A nanostructured Mn3O4/C electrode was prepared by a one‐step polyol‐assisted pyro‐synthesis without any post‐heat treatments. The as‐prepared Mn3O4/C revealed nanostructured morphology comprised of secondary aggregates formed from carbon‐coated primary particles of average diameters ranging between 20 and 40 nm, as evidenced from the electron microscopy studies. The N2 adsorption studies reveal a hierarchical porous feature in the nanostructured electrode. The nanostructured morphology appears to be related to the present rapid combustion strategy. The nanostructured porous Mn3O4/C electrode demonstrated impressive electrode properties with reversible capacities of 666 mAh g?1 at a current density of 33 mA g?1, good capacity retentions (1141 mAh g?1 with 100 % Coulombic efficiencies at the 100th cycle), and rate capabilities (307 and 202 mAh g?1 at 528 and 1056 mA g?1, respectively) when tested as an anode for lithium‐ion battery applications.  相似文献   

3.
Considerable lithium‐driven volume changes and loss of crystallinity on cycling have impeded the sustainable use of transition metal oxides (MOs) as attractive anode materials for advanced lithium‐ion batteries that have almost six times the capacity of carbon per unit volume. Herein, Co3O4 was used as a model MO in a facile process involving two pyrolysis steps for in situ encapsulation of nanosized MO in porous two‐dimensional graphitic carbon nanosheets (2D‐GCNs) with high surface areas and abundant active sites to overcome the above‐mentioned problems. The proposed method is inexpensive, industrially scalable, and easy to operate with a high yield. TEM revealed that the encaged Co3O4 is well separated and uniformly dispersed with surrounding onionlike graphitic layers. By taking advantage of the high electronic conductivity and confinement effect of the surrounding 2D‐GCNs, a hierarchical GCNs‐coated Co3O4 (Co3O4@GCNs) anode with 43.5 wt % entrapped active nanoparticles delivered a remarkable initial specific capacity of 1816 mAh g?1 at a current density of 100 mA g?1. After 50 cycles, the retained capacity is as high as 987 mAh g?1. When the current density was increased to 1000 mA g?1, the anode showed a capacity retention of 416 mAh g?1. Enhanced reversible rate capability and prolonged cycling stability were found for Co3O4@GCN compared to pure GCNs and Co3O4. The Co3O4@GCNs hybrid holds promise as an efficient candidate material for anodes due to its low cost, environmentally friendly nature, high capacity, and stability.  相似文献   

4.
A facile and sustainable procedure for the synthesis of nitrogen‐doped hierarchical porous carbons with a three‐dimensional interconnected framework (NHPC‐3D) was developed. The strategy, based on a colloidal crystal‐templating method, utilizes nitrogenous dopamine as the precursor due to its unique properties, including self‐polymerization under mild alkaline conditions, coating onto various surfaces, a high carbonization yield, and well‐preserved nitrogen doping after heat treatment. The obtained NHPC‐3D possesses a high surface area of 1056 m2 g?1, a large pore volume of 2.56 cm3 g?1, and a high nitrogen content of 8.2 wt %. The NHPC‐3D is implemented as the electrode material of a supercapacitor and exhibits a specific capacitance as high as 252 F g?1 at a current density of 2 A g?1. The device also shows a high capacitance retention of 75.7 % at a higher current density of 20 A g?1 in aqueous electrolyte due to a sufficient surface area for charge accommodation, reversible pseudocapacitance, and minimized ion‐transport resistance, as a result of the advantageous interconnected hierarchical porous texture. These results showcase NHPC‐3D as a promising candidate for electrode materials in supercapacitors.  相似文献   

5.
A simple, cost‐effective, and easily scalable molten salt method for the preparation of Li2GeO3 as a new type of high‐performance anode for lithium‐ion batteries is reported. The Li2GeO3 exhibits a unique porous architecture consisting of micrometer‐sized clusters (secondary particles) composed of numerous nanoparticles (primary particles) and can be used directly without further carbon coating which is a common exercise for most electrode materials. The new anode displays superior cycling stability with a retained charge capacity of 725 mAh g?1 after 300 cycles at 50 mA g?1. The electrode also offers excellent rate capability with a capacity recovery of 810 mAh g?1 (94 % retention) after 35 cycles of ascending steps of current in the range of 25–800 mA g?1 and finally back to 25 mA g?1. This work emphasizes the importance of exploring new electrode materials without carbon coating as carbon‐coated materials demonstrate several drawbacks in full devices. Therefore, this study provides a method and a new type of anode with high reversibility and long cycle stability.  相似文献   

6.
A series of nanostructured carbon/antimony composites have been successfully synthesized by a simple sol–gel, high‐temperature carbon thermal reduction process. In the carbon/antimony composites, antimony nanoparticles are homogeneously dispersed in the pyrolyzed nanoporous carbon matrix. As an anode material for lithium‐ion batteries, the C/Sb10 composite displays a high initial discharge capacity of 1214.6 mAh g?1 and a reversible charge capacity of 595.5 mAh g?1 with a corresponding coulombic efficiency of 49 % in the first cycle. In addition, it exhibits a high reversible discharge capacity of 466.2 mAh g?1 at a current density of 100 mA g?1 after 200 cycles and a high rate discharge capacity of 354.4 mAh g?1 at a current density of 1000 mA g?1. The excellent cycling stability and rate discharge performance of the C/Sb10 composite could be due to the uniform dispersion of antimony nanoparticles in the porous carbon matrix, which can buffer the volume expansion and maintain the integrity of the electrode during the charge–discharge cycles.  相似文献   

7.
Hierarchical and hollow nanostructures have recently attracted considerable attention because of their fantastic architectures and tunable property for facile lithium ion insertion and good cycling stability. In this study, a one‐pot and unusual carving protocol is demonstrated for engineering hollow structures with a porous shell. Hierarchical TiO2 hollow spheres with nanosheet‐assembled shells (TiO2 NHS) were synthesized by the sequestration between the titanium source and 2,2′‐bipyridine‐5,5′‐dicarboxylic acid, and kinetically controlled etching in trifluoroacetic acid medium. In addition, annealing such porous nanostructures presents the advantage of imparting carbon‐doped functional performance to its counterpart under different atmospheres. Such highly porous structures endow very large specifics surface area of 404 m2 g?1 and 336 m2 g?1 for the as‐prepared and calcination under nitrogen gas. C/TiO2 NHS has high capacity of 204 mA h g?1 at 1 C and a reversible capacity of 105 mA h g?1 at a high rate of 20 C, and exhibits good cycling stability and superior rate capability as an anode material for lithium‐ion batteries.  相似文献   

8.
Although lithium–oxygen batteries possess a high theoretical energy density and are considered as promising candidates for next‐generation power systems, the enhancement of safety and cycling efficiency of the lithium anodes while maintaining the high energy storage capability remains difficult. Here, we overcome this challenge by cross‐stacking aligned carbon nanotubes into porous networks for ultrahigh‐capacity lithium anodes to achieve high‐performance lithium–oxygen batteries. The novel anode shows a reversible specific capacity of 3656 mAh g?1, approaching the theoretical capacity of 3861 mAh g?1 of pure lithium. When this anode is employed in lithium–oxygen full batteries, the cycling stability is significantly enhanced, owing to the dendrite‐free morphology and stabilized solid–electrolyte interface. This work presents a new pathway to high performance lithium–oxygen batteries towards practical applications by designing cross‐stacked and aligned structures for one‐dimensional conducting nanomaterials.  相似文献   

9.
It is highly desirable to develop electroactive organic materials and their derivatives as green alternatives of cathodes for sustainable and cost‐effective lithium‐ion batteries (LIBs) in energy storage fields. Herein, compact two‐dimensional coupled graphene and porous polyaryltriazine‐derived frameworks with tailormade pore structures are fabricated by using various molecular building blocks under ionothermal conditions. The porous nanosheets display nanoscale thickness, high specific surface area, and strong coupling of electroactive polyaryltriazine‐derived frameworks with graphene. All these features make it possible to efficiently depress the dissolution of redox moieties in electrolytes and to boost the electrical conductivity of whole electrode. When employed as a cathode in LIBs, the two‐dimensional porous nanosheets exhibit outstanding cycle stability of 395 mAh g?1 at 5 A g?1 for more than 5100 cycles and excellent rate capability of 135 mAh g?1 at a high current density of 15 A g?1.  相似文献   

10.
The hierarchical porous nitrogen‐doped carbon materials (HNCs) were prepared by using nitrogen containing gelatin as the carbon source and nano‐silica obtained by a simple flame synthesis approach as the template. All of the as‐obtained HNCs show much higher Li storage capacity as compared with commercial graphite. Specifically, HNC‐700 with biggest micropore volume and highest nitrogen content exhibited optimal reversible capacities of 1084 mAh·g??1 at the current density of 37.2 mA·g?1 (0.1 C) and 309 mAh·g?1 even at 3.72 A·g?1 (10 C). This result suggests that HNCs should be a promising candidate for anode materials in high‐rate lithium ion batteries (LIBs).  相似文献   

11.
A three‐dimensional (3D) hierarchical carbon–sulfur nanocomposite that is useful as a high‐performance cathode for rechargeable lithium–sulfur batteries is reported. The 3D hierarchically ordered porous carbon (HOPC) with mesoporous walls and interconnected macropores was prepared by in situ self‐assembly of colloidal polymer and silica spheres with sucrose as the carbon source. The obtained porous carbon possesses a large specific surface area and pore volume with narrow mesopore size distribution, and acts as a host and conducting framework to contain highly dispersed elemental sulfur. Electrochemical tests reveal that the HOPC/S nanocomposite with well‐defined nanostructure delivers a high initial specific capacity up to 1193 mAh g?1 and a stable capacity of 884 mAh g?1 after 50 cycles at 0.1 C. In addition, the HOPC/S nanocomposite exhibits high reversible capacity at high rates. The excellent electrochemical performance is attributed exclusively to the beneficial integration of the mesopores for the electrochemical reaction and macropores for ion transport. The mesoporous walls of the HOPC act as solvent‐restricted reactors for the redox reaction of sulfur and aid in suppressing the diffusion of polysulfide species into the electrolyte. The “open” ordered interconnected macropores and windows facilitate transportation of electrolyte and solvated lithium ions during the charge/discharge process. These results show that nanostructured carbon with hierarchical pore distribution could be a promising scaffold for encapsulating sulfur to approach high specific capacity and energy density with long cycling performance.  相似文献   

12.
Binary transition metal selenides have been more promising than single transition metal selenides as anode materials for sodium‐ion batteries (SIBs). However, the controlled synthesis of transition metal selenides, especially those derived from metal‐organic‐frameworks with well‐controlled structure and morphology is still challenging. In this paper, highly porous NiCoSe4@NC composite microspheres were synthesized by simultaneous carbonization and selenization of a Ni?Co‐based metal‐organic framework (NiCo‐MOF) and characterized by scanning electron microscopy, transition electron microscopy, X‐Ray diffraction, X‐Ray photoelectron spectroscopy and electrochemical techniques. The rationally engineered NiCoSe4@NC composite exhibits a capacity of 325 mAh g?1 at a current density of 1 A g?1, and 277.8 mAh g?1 at 10 A g?1. Most importantly, the NiCoSe4@NC retains a capacity of 293 mAh g?1 at 1 A g?1 after 1500 cycles, with a capacity decay rate of 0.025 % per cycle.  相似文献   

13.
Flexible lithium‐ion batteries (LIBs) have recently attracted increasing attention with the fast development of bendable electronic systems. Herein, a facile and template‐free solvothermal method is presented for the fabrication of hybrid yolk–shell CoS2 and nitrogen‐doped graphene (NG) sheets. The yolk–shell architecture of CoS2 encapsulated with NG coating is designed for the dual protection of CoS2 to address the structural and interfacial stability concerns facing the CoS2 anode. The as‐prepared composite can be assembled into a film, which can be used as a binder‐free and flexible electrode for LIBs that does not require any carbon black conducting additives or current collectors. When evaluating lithium‐storage properties, such a flexible electrode exhibits a high specific capacity of 992 mAh g?1 in the first reversible discharge capacity at a current rate of 100 mA g?1 and high reversible capacity of 882 mAh g?1 after 150 cycles with excellent capacity retention of 89.91 %. Furthermore, a reversible capacity as high as 655 mAh g?1 is still achieved after 50 cycles even at a high rate of 5 C due to the yolk–shell structure and NG coating, which not only provide short Li‐ion and electron pathways, but also accommodate large volume variation.  相似文献   

14.
Hierarchical CaCo2O4 nanofibers (denoted as CCO‐NFs) with a unique hierarchical structure have been prepared by a facile electrospinning method and subsequent calcination in air. The as‐prepared CCO‐NFs are composed of well‐defined ultrathin nanoplates that arrange themselves in an oriented manner to form one‐dimensional (1D) hierarchical structures. The controllable formation process and possible formation mechanism are also discussed. Moreover, as a demonstration of the functional properties of such hierarchical architecture, the 1D hierarchical CCO‐NFs were investigated as materials for lithium‐ion batteries (LIBs) anode; they not only delivers a high reversible capacity of 650 mAh g?1 at a current of 100 mA g?1 and with 99.6 % capacity retention over 60 cycles, but they also show excellent rate capability with respect to counterpart nanoplates‐in‐nanofibers and nanoplates. The high specific surface areas as well as the unique feature of hierarchical structures are probably responsible for the enhanced electrochemical performance. Considering their facile preparation and good lithium storage properties, 1D hierarchical CCO‐NFs will hold promise in practical LIBs.  相似文献   

15.
Porous nitrogen‐doped carbon nanotubes (PNCNTs) with a high specific surface area (1765 m2 g?1) and a large pore volume (1.28 cm3 g?1) have been synthesized from a tubular polypyrrole (T‐PPY). The inner diameter and wall thickness of the PNCNTs are about 55 nm and 22 nm, respectively. This material shows extremely promising properties for both supercapacitors and for encapsulating sulfur as a superior cathode material for high‐performance lithium–sulfur (Li‐S) batteries. At a current density of 0.5 A g?1, PNCNT presents a high specific capacitance of 210 F g?1, as well as excellent cycling stability at a current density of 2 A g?1. When the S/PNCNT composite was tested as the cathode material for Li‐S batteries, the initial discharge capacity was 1341 mAh g?1 at a current rate of 1 C and, even after 50 cycles at the same rate, the high reversible capacity was retained at 933 mAh g?1. The promising electrochemical energy‐storage performance of the PNCNTs can be attributed to their excellent conductivity, large surface area, nitrogen doping, and unique pore‐size distribution.  相似文献   

16.
Metal oxides have a large storage capacity when employed as anode materials for lithium‐ion batteries (LIBs). However, they often suffer from poor capacity retention due to their low electrical conductivity and huge volume variation during the charge–discharge process. To overcome these limitations, fabrication of metal oxides/carbon hybrids with hollow structures can be expected to further improve their electrochemical properties. Herein, ZnO‐Co3O4 nanocomposites embedded in N‐doped carbon (ZnO‐Co3O4@N‐C) nanocages with hollow dodecahedral shapes have been prepared successfully by the simple carbonizing and oxidizing of metal–organic frameworks (MOFs). Benefiting from the advantages of the structural features, i.e. the conductive N‐doped carbon coating, the porous structure of the nanocages and the synergistic effects of different components, the as‐prepared ZnO‐Co3O4@N‐C not only avoids particle aggregation and nanostructure cracking but also facilitates the transport of ions and electrons. As a result, the resultant ZnO‐Co3O4@N‐C shows a discharge capacity of 2373 mAh g?1 at the first cycle and exhibits a retention capacity of 1305 mAh g?1 even after 300 cycles at 0.1 A g?1. In addition, a reversible capacity of 948 mAh g?1 is obtained at a current density of 2 A g?1, which delivers an excellent high‐rate cycle ability.  相似文献   

17.
Bipolar redox organics have attracted interest as electrode materials for energy storage owing to their flexibility, sustainability and environmental friendliness. However, an understanding of their application in all‐organic batteries, let alone dual‐ion batteries (DIBs), is in its infancy. Herein, we propose a strategy to screen a variety of phthalocyanine‐based bipolar organics. The self‐polymerizable bipolar Cu tetraaminephthalocyanine (CuTAPc) shows multifunctional applications in various energy storage systems, including lithium‐based DIBs using CuTAPc as the cathode material, graphite‐based DIBs using CuTAPc as the anode material and symmetric DIBs using CuTAPc as both the cathode and anode materials. Notably, in lithium‐based DIBs, the use of CuTAPc as the cathode material results in a high discharge capacity of 236 mAh g?1 at 50 mA g?1 and a high reversible capacity of 74.3 mAh g?1 after 4000 cycles at 4 A g?1. Most importantly, a high energy density of 239 Wh kg?1 and power density of 11.5 kW kg?1 can be obtained in all‐organic symmetric DIBs.  相似文献   

18.
Phosphorus‐rich metal phosphides have very high lithium storage capacities, but they are difficult to prepare. A low‐temperature phosphorization method based on Mg reducing PCl3 in ZnCl2 molten salt at 300 °C is developed to synthesize phosphorus‐rich CuP2@C from a Cu‐MOF derived Cu@C composite. Abnormal oxidation of Cu by Zn2+ in the molten salt is observed, which leads to the porous honeycomb nanostructure and homogeneously distributed ultrafine CuP2 nanocrystals. The honeycomb CuP2@C exhibits excellent lithium storage performance with high reversible capacity (1146 mAh g?1 at 0.2 A g?1) and superior cycling stability (720 mAh g?1 after 600 cycles at 1.0 A g?1), showing the promising application of P‐rich metal phosphides in lithium ion batteries.  相似文献   

19.
A novel porous Si/S-doped carbon composite was prepared by a magnesiothermic reaction of mesoporous SiO2, subsequently coating with a sulfur-containing polymer-poly(3,4-ethylene dioxythiophene), and a post-carbonization process. The as-prepared Si composite was homogeneously coated with disordered S-doped carbon with 2.6 wt.%?S in the composite and retained a high surface area of 58.8 m2?g?1. The Si/S-doped carbon composite exhibited superior electrochemical performance and long cycle life as an anode material in lithium ion cells, showing a stable reversible capacity of 450 mAh g?1 even at a high current rate of 6,000 mA?g?1.  相似文献   

20.
A composite of highly dispersed Fe3O4 nanoparticles (NPs) anchored in three‐dimensional hierarchical porous carbon networks (Fe3O4/3DHPC) as an anode material for lithium‐ion batteries (LIBs) was prepared by means of a deposition technique assisted by a supercritical carbon dioxide (scCO2)‐expanded ethanol solution. The as‐synthesized Fe3O4/3DHPC composite exhibits a bimodal porous 3D architecture with mutually connected 3.7 nm mesopores defined in the macroporous wall on which a layer of small and uniform Fe3O4 NPs was closely coated. As an anode material for LIBs, the Fe3O4/3DHPC composite with 79 wt % Fe3O4 (Fe3O4/3DHPC‐79) delivered a high reversible capacity of 1462 mA h g?1 after 100 cycles at a current density of 100 mA g?1, and maintained good high‐rate performance (728, 507, and 239 mA h g?1 at 1, 2, and 5 C, respectively). Moreover, it showed excellent long‐term cycling performance at high current densities, 1 and 2 A g?1. The enhanced lithium‐storage behavior can be attributed to the synergistic effect of the porous support and the homogeneous Fe3O4 NPs. More importantly, this straightforward, highly efficient, and green synthetic route will definitely enrich the methodologies for the fabrication of carbon‐based transition‐metal oxide composites, and provide great potential materials for additional applications in supercapacitors, sensors, and catalyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号