首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 647 毫秒
1.
Azo‐containing materials have been proven to possess second‐order nonlinear optical (NLO) properties, but their third‐order NLO properties, which involves two‐photon absorption (2PA), has rarely been reported. In this study, we demonstrate a significant 2PA behavior of the novel azo chromophore incorporated with bilateral diphenylaminofluorenes (DPAFs) as a π framework. The electron‐donating DPAF moieties cause a redshifted π–π* absorption band centered at 470 nm, thus allowing efficient blue‐light‐induced trans‐to‐cis photoisomerization with a rate constant of 2.04×10?1 min?1 at the photostationary state (PSS). The open‐aperture Z‐scan technique that adopted a femtosecond (fs) pulse laser as excitation source shows an appreciably higher 2PA cross‐section for the fluorene‐derived azo chromophore than that for common azobenzene dyes at near‐infrared wavelength (λex=800 nm). Furthermore, the fs 2PA response is quite uniform regardless of the molecular geometry. On the basis of the computational modeling, the intramolecular charge‐transfer (ICT) process from peripheral diphenylamines to the central azo group through a fluorene π bridge is crucial to this remarkable 2PA behavior.  相似文献   

2.
A series of star‐shaped multi‐polar chromophores (compounds 1 – 3 ) containing functionalized quinoxaline and quinoxalinoid (indenoquinoxaline and pyridopyrazine) units has been synthesized and characterized for their two‐photon absorption (2PA) properties both in the femtosecond and the nanosecond time domain. Under our experimental conditions, these model fluorophores are found to manifest strong and wide‐dispersed two‐photon absorption in the near‐infrared region. It is demonstrated that molecular structures with multi‐branched π frameworks incorporating properly functionalized quinoxalinoid units would possess large molecular nonlinear absorptivities within the studied spectral range. Effective optical‐power attenuation and stabilization behaviors in the nanosecond time domain of a selected representative dye molecule (i.e., compound 2 ) from this model compound set were also investigated and the results indicate that such structural motif could be a useful approach for the molecular design toward strong two‐photon‐absorbing material systems for quick‐responsive and broadband optical‐suppressing‐related applications, particularly to confront long laser pulses.  相似文献   

3.
We report a poly(ethylene glycol)‐poly(L ‐alanine)‐azobenzene‐poly(L ‐alanine)‐poly(ethylene glycol) (PEG‐PA‐Z‐PA‐PEG) as a temperature and light sensitive polymer. The poly(ethylene glycol)‐poly(L ‐alanine) diblock copolymers with a flexible‐rigid block structure were coupled by an azobenzene group that undergoes a reversible configurational change between “trans” and “cis” upon exposure to UV and vis light. The single azobenzene molecule embedded in the middle of a block copolymer with a flexible (shell)‐rigid (core) structure significantly affected molecular assembly, micelle size, polypeptide secondary structure, and sol‐to‐gel transition temperature of the polymer aqueous solution, depending on its exposure to UV or vis light. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Recently, metal‐free, heteroatom‐doped carbon nanomaterials have emerged as promising electrocatalysts for the oxygen evolution reaction (OER), but their synthesis is a tedious process involving energy‐wasting calcination. Molecular electrocatalysts offer attractive catalysts for the OER. Here, phytic acid (PA) was selected to investigate the OER activity of carbons in organic molecules by DFT calculations and experiments. Positively charged carbons on PA were very active towards the OER. The PA molecules were fixed into a porous, conductive hydrogel with a superhydrophilic surface. This outperformed most metal‐free electrocatalysts. Besides the active sites on PA, the high OER activity was also related to the porous and conductive networks on the hydrogel, which allowed fast charge and mass transport during the OER. Therefore, this work provides a metal‐free, organic‐molecule‐based electrocatalyst to replace carbon nanomaterials for efficient OER.  相似文献   

5.
A simple and practical derivatization procedure for increasing the detectability and enantiomeric separation of chiral carboxylic acids in LC/ESI‐MS/MS has been developed. (S)‐Anabasine (ANA) was used as the derivatization reagent and rapidly reacted with carboxylic acids [3‐hydroxypalmitic acid (3‐OH‐PA), 2‐(β‐carboxyethyl)‐6‐hydroxy‐2,7,8‐trimethylchroman (γ‐CEHC), and etodolac] in the presence of 4‐(4,6‐dimethoxy‐1,3,5‐triazin‐2‐yl)‐4‐methylmorpholium chloride. The resulting ANA‐derivatives were highly responsive in ESI‐MS operating in the positive‐ion mode and gave characteristic product ions during MS/MS, which enabled sensitive detection using selected reaction monitoring; the detection responses of the ANA‐derivatives were increased by 20–160‐fold over those of the intact carboxylic acids and the limits of detection were in the low femtomole range (1.8–11 fmol on the column). The ANA‐derivatization was also effective for the enatiomeric separation of the chiral carboxylic acids; the resolution was 1.92, 1.75, and 2.03 for 3‐OH‐PA, γ‐CHEC, and etodolac, respectively. The derivatization procedure was successfully applied to a biological sample analysis; the derivatization followed by LC/ESI‐MS/MS enabled the separation and detection of trace amounts of 3‐OH‐PA in neonatal dried blood spot and γ‐CEHC in human saliva with a simple pretreatment and small sample volume.  相似文献   

6.
The steady‐state photophysical, NMR, and two‐photon absorption (2PA) properties of a new fluorene derivative ( 1 ) containing the 2‐(2′‐hydroxyphenyl)benzothiazole (HBT) terminal construct is investigated for use as a fluorescence probe in bioimaging. A comprehensive analysis of the linear spectral properties reveals inter‐ and intramolecular hydrogen bonding and excited state intramolecular proton transfer (ESIPT) processes in the HBT substituent. A specific electronic model with a double minimum potential energy surface is consistent with the observed spectral properties. The 2PA spectra are obtained using a standard two‐photon induced fluorescence method with a femtosecond kHz laser system, affording a maximum 2PA cross section of ~600 GM, a sufficiently high value for two‐photon fluorescence imaging. No dependence of two‐photon absorption efficiency on solvent properties and hydrogen bonding in the HBT substituent is observed. The potential use of this fluorenyl probe in bioimaging is demonstrated via one‐ and two‐photon fluorescence imaging of COS‐7 cells.  相似文献   

7.
《化学:亚洲杂志》2017,12(22):2950-2955
Cyanobacteria blooms possess serious threats to water resources. Herein, we report the synthesis of polyanionic membranes (PA‐M) by in situ photo‐crosslinking of a sulfate‐based anionic monomer followed by cation‐exchange with metal cations, Fe3+ (PA‐Fe), Cu2+ (PA‐Cu), or Zn2+ (PA‐Zn). The effect of cations on the anti‐cyanobacterial activities against both Microcystis aeruginosa (M. aeruginosa ) and Anabaena flos‐aquae (A. flos‐aquae ) was investigated. All the prepared metal‐containing membranes (PA‐Fe, PA‐Cu, PA‐Zn) exhibit high anti‐cyanobacterial activities and long‐term anti‐cyanobacterial stability, demonstrating that the synthesized PA‐M membranes can be used as an effective and safe inhibitor to control cyanobacterial blooms.  相似文献   

8.
The synthesis, crystal and electronic structures, and one‐ and two‐photon absorption properties of two quadrupolar fluorenyl‐substituted tetraphenyl carbo‐benzenes are described. These all‐hydrocarbon chromophores, differing in the nature of the linkers between the fluorenyl substituents and the carbo‐benzene core (C?C bonds for 3 a , C?C?C?C expanders for 3 b ), exhibit quasi–superimposable one‐photon absorption (1PA) spectra but different two‐photon absorption (2PA) cross‐sections σ2PA. Z‐scan measurements (under NIR femtosecond excitation) indeed showed that the C?C expansion results in an approximately twofold increase in the σ2PA value, from 336 to 656 GM (1 GM=10?50 cm4 s molecule?1 photon?1) at λ=800 nm. The first excited states of Au and Ag symmetry accounting for 1PA and 2PA, respectively, were calculated at the TDDFT level of theory and used for sum‐over‐state estimations of σ2PA(λi), in which λi=2 hc/Ei, h is Planck’s constant, c is the speed of light, and Ei is the energy of the 2PA‐allowed transition. The calculated σ2PA values of 227 GM at 687 nm for 3 a and 349 GM at 708 nm for 3 b are in agreement with the Z‐scan results.  相似文献   

9.
A hyperbranched polyamine was prepared using an A2 + B3 approach. It acted as a hyperbranched charring and foaming agent (HCFA) in combination with ammonium polyphosphate (APP) to form a new intumescent flame retardant (IFR) system for polyamide 6 (PA6). Effect of HCFA on flame retardant and thermal degradation properties of IFR‐PA6 was investigated by limiting oxygen index (LOI), UL‐94 vertical burning, cone calorimeter, and thermogravimetric analysis (TGA) tests. The IFR system presented the most effective flame retardancy in PA6 when the weight ratio of APP to HCFA was 2:1. The LOI value of IFR‐PA6 could reach 36.5 with V‐0 rating when the IFR loading was 30 wt%. Even if the loading decreased to 25 wt%, IFR‐PA6 could still maintain V‐0 rating with an LOI value of 31. TGA curves indicated that APP would interact with both PA6 and HCFA in PA6/APP/HCFA composite under heating. The interaction between APP and HCFA improved the char formation ability of IFR system and then much more char was formed for PA6/APP/HCFA composite than for PA6/APP. Therefore, better flame retardancy was achieved. Moreover, the structure and morphology of char residue were studied by Fourier transform infrared (FTIR), X‐ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The results indicated that compact and foaming char layer containing P‐O‐C structure was formed for PA6/APP/HCFA system during combustion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A series of highly extended π‐conjugated ladder‐type oligo(p‐phenylene)s containing up to 10 phenyl rings with (L)‐Ph(n)‐NPh (n=7–10) or without diphenylamino endcaps (L)‐Ph(n) (n=7 and 8) were synthesized and investigated for their multiphoton absorption properties for frequency upconverted blue ASE/lasing. Extremely large two‐photon absorption (2PA) cross‐sections and highly efficient 2PA ASE/lasing with ultralow threshold were achieved. (L)‐Ph(10)‐NPh exhibits the highest intrinsic 2PA cross‐section of 3643 GM for a blue emissive organic fluorophore reported so far. The record‐high 2PA pumped ASE/lasing efficiency of 2.06 % was obtained by un‐endcapped oligomer, (L)‐Ph(8) rather than that with larger σ2, suggesting that a molecule with larger σ2 is not guaranteed to exhibit higher η2. All of these oligomers exhibit exceptionally ultralow 2PA pumped ASE/lasing thresholds, among which the lowest 2PA pumped threshold of circa 0.26 μJ was achieved by (L)‐Ph(10)‐NPh.  相似文献   

11.
We have performed a model study to explore the influence of surface structure on the anchoring of organic molecules on oxide materials. Specifically, we have investigated the adsorption of phthalic acid (PA) on three different, well‐ordered, and atomically defined cobalt oxide surfaces, namely 1) Co3O4(111), 2) CoO(111), and 3) CoO(100) on Ir(100). PA was deposited by physical vapor deposition (PVD). The formation of the PA films and interfacial reactions were monitored in situ during growth by isothermal time‐resolved IR reflection absorption spectroscopy (TR‐IRAS) under ultrahigh vacuum (UHV) conditions. We observed a pronounced structure dependence on the three surfaces with three distinctively different binding geometries and characteristic differences depending on the temperature and coverage. 1) PA initially binds to Co3O4(111) through the formation of a chelating bis‐carboxylate with the molecular plane oriented perpendicularly to the surface. Similar species were observed both at low temperature (130 K) and at room temperature (300 K). With increasing exposure, chelating mono‐carboxylates became more abundant and partially replaced the bis‐carboxylate. 2) PA binds to CoO(100) in the form of a bridging bis‐carboxylate for low coverage. Upon prolonged deposition of PA at low temperature, the bis‐carboxylates were converted into mono‐carboxylate species. In contrast, the bis‐carboxylate layer was very stable at 300 K. 3) For CoO(111) we observed a temperature‐dependent change in the adsorption mechanism. Although PA binds as a mono‐carboxylate in a bridging bidentate fashion at low temperature (130 K), a strongly distorted bis‐carboxylate was formed at 300 K, possibly as a result of temperature‐dependent restructuring of the surface. The results show that the adsorption geometry of PA depends on the atomic structure of the oxide surface. The structure dependence can be rationalized by the different arrangements of cobalt ions at the three surfaces.  相似文献   

12.
The melt of polydodecamide (PA‐12) shows a significant viscosity decrease upon incorporation of benzenesulfonamide plasticizers (BSAs), this effect being maximum for a monofunctional BSA with a 12‐carbon‐atom‐long alkyl chain. Nonexhaustive X‐ray diffraction analysis developed on isothermally crystallized samples validated a two‐phase model for describing PA‐12 plasticized by N‐(n‐butyl)benzenesulfonamide (BBSA). The massive presence of BBSA between the lamellar crystals was established, and lamellar fragmentation was also observed. Further, a steady increase in PA‐12 crystallinity with an increasing BBSA content was evident (and confirmed by DSC) and is consistent with the plasticizer easing the mobility of polymer chains during crystallization. Large melting point depressions resulting from both polymer–plasticizer miscibility and lamellar fragmentation were observed with several mono‐ and bifunctional BSA plasticizers. Phase separation in PA‐12 solid state was only observed at 20 mol % of ?SO2NH2, alhough miscibility occurred in the melt. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2022–2034, 2001  相似文献   

13.
The linear interaction energy (LIE) method to compute binding free energies is applied to lectin‐monosaccharide complexes. Here, we calculate the binding free energies of monosaccharides to the Ralstonia solanacearum lectin (RSL) and the Pseudomonas aeruginosa lectin‐II (PA‐IIL). The standard LIE model performs very well for RSL, whereas the PA‐IIL system, where ligand binding involves two calcium ions, presents a major challenge. To overcome this, we explore a new variant of the LIE model, where ligand–metal ion interactions are scaled separately. This model also predicts the saccharide binding preference of PA‐IIL on mutation of the receptor, which may be useful for protein engineering of lectins. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Three new donor–π–donor (D‐π‐D) tetrathienoacene (thieno[2′,3′:4,5]thieno[3,2‐b]thieno[2,3‐d]thiophene (TTA))‐cored chromophores, end‐functionalized with electron‐donating triphenylamine (TPA) groups, were developed and characterized for their two‐photon‐related properties by using both nano‐ and femtosecond laser pulses as the probing tools. TTA‐based chromophores exhibit stronger and more widely dispersed two‐photon absorption (2PA) than those of dithienothiophene (DTT)‐based congeners. As a consequence, the bithiophene‐conjugated TTA chromophore exhibits the highest maximum 2PA cross‐section value (up to 2500 GM) with good thermal stability, and thus, it is the best performing two‐photon chromophore among the studied model compounds. The bithiophene‐conjugated DTT analogue exhibits the second highest maximum two‐photon absorptivity of 1950 GM, which is nearly 7 times larger than that of previously reported DTT‐based chromophores.  相似文献   

15.
Free radicals generated by UV‐light irradiation of a frozen solution containing a fraction of pyruvic acid (PA) have demonstrated their dissolution dynamic nuclear polarization (dDNP) potential, providing up to 30 % [1‐13C]PA liquid‐state polarization. Moreover, their labile nature has proven to pave a way to nuclear polarization storage and transport. Herein, differently from the case of PA, the issue of providing dDNP UV‐radical precursors (trimethylpyruvic acid and its methyl‐deuterated form) not involved in any metabolic pathway was investigated. The 13C dDNP performance was evaluated for hyperpolarization of [U‐13C6,1,2,3,4,5,6,6‐d7]‐d ‐glucose. The generated UV‐radicals proved to be versatile and highly efficient polarizing agents, providing, after dissolution and transfer (10 s), a 13C liquid‐state polarization of up to 32 %.  相似文献   

16.
Flame‐retarded polyamide 6.6 (FR‐PA6.6) was prepared by the cocondensation of hexamethylene diammonium adipate (AH‐salt) with the corresponding salts of hexamethylene diamine and two different organophosphorus compounds, namely, 3‐hydroxyphenylphosphinylpropanoic acid (3‐HPP, 1) and 9,10‐dihydro‐10‐[2,3‐di (hydroxycarbonylpropyl]‐10‐phosphaphenanthrene‐10‐oxide (DDP, 2). The incorporation of the phosphorus comonomers and the thermal and physical properties of the resulting copolyamides have been studied. The phosphorus‐modified FR‐PA6.6 possesses high relative viscosities of 2.0 to 2.4, good thermal stability, and was used for the production of polyamide blends by merging FR‐PA6.6 with commercial PA6. This offered access to flame‐retarded PA6 multifilaments, which possess tensile strengths up to 0.7 GPa and elastic moduli up to 6.2 GPa. Knitted fabrics of FR‐PA6 exhibit high limiting oxygen index (LOI) values between 36 and 38 and executed burning tests demonstrate that the incorporation of phosphorus‐based comonomers improve flame retardancy significantly. The approach presented here offers a straightforward access to effective flame retardancy in nylon 6.  相似文献   

17.
Two novel high‐molecular weight functional polyacetylenes (PA) bearing oxadiazole group as a pendant, poly(2‐(4‐octoxyphenyl)‐5‐(4‐ethynylphenyl)‐1,3,4‐oxadiazole) ( P1 ) and poly(2‐(4′‐octoxyphenyl)‐5‐(4′‐propynyloxyphenyl)‐1,3,4‐oxadiazole) ( P2 ) were synthesized by [Rh(nbd)Cl]2‐Et3N catalysts. Both polymers were soluble in common organic solvents such as CHCl3 and tetrahydrofuran. Their structures and properties were characterized and evaluated with FTIR, NMR, UV, thermogravimetric analysis, GPC, optical‐limiting and nonlinear optical analyses, respectively. The results show that linkage of oxadiazole chromophore to PA main chain has improved the nonlinear optical (NLO) property of PA, and endowed PA with novel optical limiting properties and enhanced thermal stability. Simultaneously, the optical‐limiting and NLO properties of the polymers were sensitive to their molecular structures. P1 with oxadiazole directly incorporated into PA main chain as a pendant showed better performances and larger third‐order nonlinear optical susceptibility than P2 with oxadiazole incorporated into PA main chain via a spacer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2072–2083, 2008  相似文献   

18.
A novel one‐handed helical poly(phenylacetylene) bearing L‐hydroxyproline pendants (poly(PA‐P)) was synthesized as an eco‐friendly polymer‐supported catalyst for asymmetric reactions. The helical poly(PA‐P) catalyzed the asymmetric aldol reactions of cyclohexanone with p‐nitrobenzaldehyde, and showed good recyclability and higher enantiomeric excess (ee) in aqueous medias than that in organic medias. The one‐handed helicity of poly(PA‐P) was clearly affected by the water content in the aqueous media. The helical poly(PA‐P) showed the higher enantioselectivity (ee = 99%) than its monomer PA‐P (ee = 54%) in THF/H2O (H2O vol % = 25.0 vol %). After the one‐handed helical structure of poly(PA‐P) was destroyed by grinding treatment, the ee of the reaction clearly decreased from 99 to 49%. These indicate that the one‐handed helical structure of poly(PA‐P) played an important role in the high enantioselectivity of the asymmetric aldol reactions in the aqueous media. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1024–1031  相似文献   

19.
Electric‐field‐induced molecular alignments of side‐chain liquid‐crystalline polyacetylenes [? {HC?C[(CH2)mOCO‐biph‐OC7H15]}? , where biph is 4,4′‐biphenylyl and m is 3 (PA3EO7) or 9 (PA9EO7)] were studied with X‐ray diffraction and polarized optical microscopy. An orientation as high as 0.84 was obtained for PA9EO7. Furthermore, the molecular orientation of PA9EO7 was achieved within a temperature range between the isotropic‐to‐smectic A transition temperature and 115 °C, and this suggested that the orientational packing was affected by the thermal fluctuation of the isotropic liquid and the mobility of the mesogenic moieties. The maximum achievable orientation for PA9EO7 was much greater than that for PA3EO7. This was the first time that the electric‐field‐induced molecular orientation of a side‐chain liquid‐crystalline polymer with a stiff backbone was studied. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1333–1341, 2004  相似文献   

20.
Polyamide 6/ZnO nanocomposites (noted as PA6/ZnO) were prepared by an in situ co‐producing method, during which Zn2(OH)2CO3 decomposed into nano‐ZnO in the process of the opening‐ring polymerization of caprolactam at high temperature. Transmission electron microscopy, X‐ray diffraction, thermogravimetric analysis, and differential scanning calorimetry were used to analyze the size and dispersive properties of nano‐ZnO, the crystallization and melting properties, the thermal properties, and crystal structure of PA6/ZnO composite, respectively. The results showed that the nano‐ZnO derived from Zn2(OH)2CO3 via in situ polymerization of PA6‐ZnO was uniformly dispersed in PA6 matrix. However, the overall nano‐ZnO crystallization rate and crystal size in the PA6 matrix were hindered by the bulky PA6 molecular chains. The mechanical properties were evaluated using universal tensile and impact testing instruments. The results revealed that PA6/ZnO composite with 0.2% nano‐ZnO content possessed excellent tensile strength, enhanced by 75% in comparison with the pure PA6. The nano‐ZnO had little influence on the impact strength of PA6. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 165–170  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号