首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 °C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC–MS without any clean-up process. The recoveries were in the range of 93.5–104.6%, and the relative standard deviations were lower than 8.7%.  相似文献   

2.
An online solid-phase extraction and liquid chromatography in combination with tandem mass spectrometry method was developed for the simultaneous determination of 31 antibiotics in drinking water, surface water and reclaimed waters. The developed methodology requires small sample volume (10 mL), very little sample preparation and total sample run time was 20 min. An Ion Max API heated electrospray ionization source operated in the positive mode with two selected reaction monitoring transitions was used per antibiotic for positive identity and quantification performed by the internal standard approach, to correct for matrix effects and any losses in the online extraction step. Method detection limits were in the range of 1.2–9.7, 2.2–15, 5.5–63 ng/L in drinking water, surface water and reclaimed waters, respectively. The method accuracy in matrix spiked samples ranged from 50–150 % for the studied antibiotics. The applicability of the method was demonstrated using various environmental and reclaimed water matrices. Erythromycin was detected in more than 85 % of the samples in all matrices (28–414, n.d.–199, n.d.–66 ng/L in reclaimed, river and drinking waters respectively). The other frequently detected antibiotics in reclaimed waters were nalidixic acid, clarithromycin, azithromycin, trimethoprim, and sulfamethoxazole.  相似文献   

3.
We describe a simple and sensitive porous polypropylene membrane-protected micro-solid-phase extraction (μ-SPE) approach for the sample preparation and determination of carbamate pesticides in soil samples by high-performance liquid chromatography. The μ-SPE device consisted of C18 sorbent held within a porous polypropylene envelope. In order to achieve optimum performance, several extraction parameters were optimized. Under the most favorable conditions, the extraction efficiency of the μ-SPE was very high, with detection limits in the range of 0.01–0.40 ng g−1. This is more than two orders of magnitude lower than the limits obtained by the United States Environmental Protection Agency Methods 8321A and 8318. A linear relationship was obtained for each analyte in the range of 2 and 200 ng g−1. The relative standard deviation for the analysis of aged soil samples spiked at 5 ng g−1 was ≤11%. The reproducibility of separate μ-SPE device used for experiments was satisfactory (relative standard deviations ranged from 4 to 11%), indicating that the method is reliable for routine environmental analysis.  相似文献   

4.
Guo L  Lee HK 《Journal of chromatography. A》2011,1218(52):9321-9327
Micro-solid-phase extraction (μ-SPE) was developed for the determination of trace level of 16 United States Environmental Protection Agency priority polycyclic aromatic hydrocarbons (PAHs) in river water samples with gas chromatography-mass spectrometry (GC-MS). In the μ-SPE device, multiwalled carbon nanotubes was employed as sorbent and was packed inside an porous polypropylene membrane "envelope" whose edges were heat-sealed to secure the contents. The μ-SPE device was placed in a stirred sample solution to extract the analytes. The porous polypropylene membrane envelope in μ-SPE device acts as a filter to exclude potential interferences, such as eliminating or reducing the influence of particles that are bigger than the pore size. After extraction, analyte desorption was carried out with a suitable organic solvent under ultrasonication. Important extraction parameters were optimized in detail, including the selection and amount of sorbent materials, the extraction temperature and extraction time, desorption solvent and desorption time, amount of organic modifier, agitation speed and sample ionic strength. Under the developed extraction conditions, the proposed method provided good linearity in the range of 0.1-50 μg/L, low limits of detection (4.2-46.5 ng/L), and good repeatability of the extractions (relative standard deviations, <12%, n=5). The developed μ-SPE method was successfully applied to the extraction of PAHs in river water samples. The μ-SPE method was demonstrated to be a fast and efficient method for the determination of PAHs from environmental water samples.  相似文献   

5.
In this research we report the implementation of micro-solid-phase extraction (μ-SPE) in the needle of a syringe for integrating sampling, analyte enrichment and sample introduction into a single device. Both single- and multi-walled carbon nanotubes (CNTs) were explored as high performance sorbents for μ-SPE in packed and self assembled formats. The need for such a sorbent was critical because the needle probe could hold only a small amount of material (around 300 μg). Conventional C-18 and self-assembled CNTs were found to be ineffective with enrichment factors less than one. However, packed beds of CNTs were found to be excellent sorbent phases, where high extraction efficiencies (as high as 27%) as well as enrichment factors (close to 7) could be achieved. The overall method showed excellent linearity, reproducibility, and low method detection limit (0.1–3 ng/mL for MWNTs). The sorption on CNTs followed Freundlich isotherms, and the functionalized CNTs were more effective for enriching the polar compounds.  相似文献   

6.
A rapid, simple, and efficient method using ultrasound-assisted emulsification microextraction combined with dispersive micro-solid phase extraction (USAE-D-µ-SPE) was developed for detection and quantification of three azole antifungals in milk samples by high-performance liquid chromatography diode array detector. In this study, mesoporous carbon, COU-2, was used as sorbent in USAE-D-µ-SPE for the extraction and preconcentration of analytes. Several important experimental parameters, including type of deproteinized solvents, desorption time, type of extraction solvents, volume of extraction solvent, extraction time, emulsification time, sample pH, salt addition, and mass of COU-2 sorbent, were optimized using spiked milk samples. Under the optimum extraction and detection conditions, three azole antifungals, namely ketoconazole, clotrimazole, and miconazole, were determined within 20 min, with good linearity of matrix-matched calibration in the range of 0.5–5000.0 µg L?1 with coefficient of determination, r 2 ≥ 0.9943. The method showed limits of detection and limits of quantification of all analytes in the range of 0.15–3.0 and 0.5–10.0 µg L?1, respectively. Good repeatability with RSDs <15% (n = 3) and satisfactory relative recoveries (83.3–111.1%) were obtained for spiked azole antifungal drugs in milk. The results reveal that the developed USAE-D-µ-SPE method was a simple, rapid, efficient, environmentally friendly, and practicable method for the determination of azole antifungals in milk samples.  相似文献   

7.
Simultaneous Determination of Ten Antibiotic Residues in Milk by UPLC   总被引:2,自引:0,他引:2  
An analytical method for rapid screening and quantitative determination of ten antibiotics (chloramphenicol, thiamphenicol, tetracycline, oxytetracycline, chlortetracycline, metacycline, doxycycline, cefoperazone, ceftriaxone and cefaclor) residues in milk was developed using ultra performance liquid chromatography with photodiode array detector. After extraction with McIIvaine buffer + methanol (8 + 2), the extract was cleaned up with solid-phase extraction cartridge. The conditions of sample extraction, cleaning and separation were optimized. The average spiked recoveries of milk samples were 52.1–68.0, 70.1–81.0 and 76.2–101.0% at spiked levels of 0.1, 0.5, 2.5 μg g?1, respectively with precisions of 3.3–15.9%. The limits of detection and quantification were 0.003–0.022 and 0.01–0.08 μg g?1, respectively. The proposed method has been applied to the determination of antibiotics in actual milk samples with satisfactory results.  相似文献   

8.
董婵婵  胡艳云  吕亚宁  宋伟  韩芳  郑平  邓宁 《色谱》2016,34(9):850-859
以磁性石墨烯纳米复合材料(Fe3O4-G)作为吸附剂,建立了磁性分散微固相萃取-液相色谱-四极杆串联质谱(LC-MS/MS)测定畜禽肉样品中9种非甾体抗炎剂(NSAIDs)残留的方法。试样经酸化乙腈均质、冷冻离心除油、乙腈饱和正己烷脱脂后,采用磁性分散微固相萃取净化。对影响萃取效率的因素(萃取时间、样品溶液的pH值和洗脱条件)进行了优化。9种非甾体抗炎剂的检出限(LOD,S/N=3)为0.2~8.2 μg/kg,定量限(LOQ,S/N=10)为0.5~25.4 μg/kg。在添加水平分别为LOQ、2倍LOQ和10倍LOQ时,9种药物的加标回收率为83.3%~104.5%,相对标准偏差为1.2%~6.8%。与Sep-Pak Vac NH2和Oasis HLB固相萃取柱相比,磁性分散微固相萃取方法富集、分离效果好,负载量大,可重复利用,为畜禽肉中非甾体抗炎剂残的测定提供了一种新的前处理技术。  相似文献   

9.
A field-amplified sample injection–capillary zone electrophoresis (FASI-CZE) method for the analysis of benzophenone (BP) UV filters in environmental water samples was developed, allowing the separation of all compounds in less than 8 min. A 9- to 25-fold sensitivity enhancement was obtained with FASI-CZE, achieving limits of detection down to 21–59 μg/L for most of the analyzed BPs, with acceptable run-to-run and day-to-day precisions (relative standard deviations lower than 17 %). In order to remove water sample salinity and to enhance FASI sensitivity, an off-line solid-phase extraction (SPE) procedure using a Strata X polymeric reversed-phase sorbent was used and afforded recoveries up to 72–90 % for most BPs. With the combination of off-line SPE and FASI-CZE, limits of detection in the range 0.06–0.6 μg/L in a river water matrix, representing a 2,400- to 6,500-fold enhancement, were obtained. Method performance was evaluated by quantifying a blank river water sample spiked at 1 μg/L. For a 95 % confidence level, no statistical differences were observed between found concentrations and spiked concentrations (probability at the confidence level, p value, of 0.60), showing that the proposed off-line SPE-FASI-CZE method is suitable for the analysis of BP UV filters in environmental water samples at low microgram per liter levels. The method was successfully applied to the analysis of BPs in river water samples collected up- and downstream of industrialized and urban areas, and in some drinking water samples.  相似文献   

10.
《Analytical letters》2012,45(1):74-86
A simple, fast, and effective method has been presented for the determination of jasmonates in plant samples by polymer monolith microextraction (PMME). A poly (methacrylic acid-ethylene glycol dimethacrylate) (MAA-EGDMA) monolith-based device was developed for extraction, purification, and concentration; HPLC-UV was used for evaluation. To realize the best microextraction efficiency, parameters such as sample pH value, flow rate, and sample volume were systematically examined and optimized. Aqueous solution (5 mL) of jasmonates at pH 3.0 was selected as sample solution, and loaded onto the monolith at flow rate of 0.15 mL/min; finally, 50 μL of acetonitrile was used for elution. The proposed method exhibited impressive enrichment efficiency (almost 100-fold) and the limits of detection for jasmonic acid and methyl jasmonate obtained 0.5 and 2 ng/mL by using UV detection. Wide linear ranges were also observed (2–2000 and 5–2000 ng/mL) for both jasmonic acid and methyl jasmonate, with R2 > 0.999. The developed PMME-HPLC method was successfully applied to the determination of jasmonates in fresh wintersweet flowers with recoveries in the range of 91.9–97.2%. The result was confirmed by an HPLC-MS method. The PMME method was also compared with a conventional C18-SPE method and exhibited better clean-up efficiency.  相似文献   

11.
Zhou  Qian  Wang  Nan  Zhu  Lihua  Tang  Heqing 《Chromatographia》2015,78(23):1475-1484

It is a challenge to simultaneously determine the multiple-component targets in complex matrices when some of the targets bear chromophores but some contain no chromophores. A novel HPLC–CAD–DAD method coupled with accelerated solvent extraction and online solid phase extraction (SPE) was developed for simultaneous determination of seven antibiotics in solid bio-matrices. The online SPE operation parameters were optimized on a Acclaim®120 C18 cartridge in terms of extraction efficiency with sample injection volume of 1 mL, and the online SPE operation yielded enhancement factors in the range of 29–77 for the different antibiotics. The proposed method showed good recoveries ranging between 79.2 and 104.7 % for different antibiotics and excellent inter-day and intra-day precision with relative standard deviation values ranging from 0.6 to 7.8 %. The detection limits were between 1.8 and 18.0 μg kg−1.

  相似文献   

12.
Ge D  Lee HK 《Journal of chromatography. A》2011,1218(47):8490-8495
Zeolite imidazolate framework 8 (ZIF-8) has permanent porosity, high surface area, hydrophobic property, open metal sites and remarkable water stability. These novel properties characterize the material as being different from other moisture sensitive metal-organic frameworks and endow ZIF-8 with the potential to extract trace analytes from environmental water samples. In the present study, ZIF-8 was synthesized and used as a sorbent for micro-solid-phase extraction of 6 polycyclic aromatic hydrocarbons (PAHs) from environmental water samples for the first time. Parameters influencing the extraction efficiency such as desorption time, extraction time, desorption solvent and salt concentration were investigated. Environmental water samples collected from a local lake were processed using this novel μ-SPE procedure. ZIF-8 proved to be a very efficient extraction sorbent for the extraction of trace analytes from water samples. The limits of detection from gas chromatography-mass spectrometric analysis of PAHs were 0.002-0.012 ng/ml. The linear ranges were 0.1-50 or 0.5-50 ng/ml. The relative standard deviations for five replicates of the extractions were in the range of 2.1-8.5%.  相似文献   

13.
A micro-solid-phase extraction (μ-SPE) device was developed by filling copper(II) isonicotinate coordination polymer (Cu(4-C5H4N-COO)2(H2O)4) into a porous polypropylene envelope, and the μ-SPE, coupling with gas chromatography (GC) with a micro-cell electron capture detector (μ-ECD), was used for extraction and determination of PBDEs in soils. Variables affecting extraction procedures, including temperature, water volume, extraction time, and desorption time, were investigated in a spiked soil, and the parameters were optimized. Under the optimal experimental conditions, the method detection limits for seven PBDEs (BDE-28, 47, 99, 100, 153, 154, and 183) were in the range of 0.026–0.066 ng g−1, and the reproducibility was satisfactory with the relative standard deviation in range of 1.3–10.1%. Good linear relationship between PBDEs concentrations and GC signals (defined as peak area) was obtained in the range between 0.1 and 200 ng g−1. The recovery of the seven PBDEs by μ-SPE varied from 70 to 90%, which was comparable to that determined by accelerated solvent extraction method. Finally, the proposed method was used to determine PBDEs in several field-contaminated soils, and it was suggested that the μ-SPE is a promising alternative microextraction technique for the detection of PBDEs in soils.  相似文献   

14.
An in-line matrix cleanup method was used for the simultaneous extraction of 15 sulfonamides and two metabolites from manure samples. The ultrasound/microwave-assisted extraction (UMAE) combined with solid–liquid–solid dispersive extraction (SLSDE) procedure provides a simple sample preparation approach for the processing of manure samples, in which the extraction and cleanup are integrated into one step. Ultrasonic irradiation power, extraction temperature, extraction time, and extraction solvent, which could influence the UMAE efficiency, were investigated. C18 was used as the adsorbent to reduce the effects of interfering components during the extraction procedure. The extracts were concentrated, and the analytes were analyzed by liquid chromatography–tandem mass spectrometry (LC–MS/MS) without any further cleanup. The isotopically labeled compounds sulfamethoxazole-d 4, sulfamethazine-d 4, sulfamonomethoxine-d 4, and sulfadimethoxine-d 6 were selected as internal standards to minimize the matrix effect in this method. The recoveries of the antibiotics tested ranged from 71 to 118 % at the three spiking levels examined (20, 200, and 500 μg?·?kg-1). The limits of detections were 1.2–3.6 μg?·?kg-1 and the limits of quantification were 4.0–12.3 μg?·?kg-1 for the sulfonamides and their metabolites. The applicability of the method was demonstrated by analyzing 30 commercial manure samples. The results indicated that UMAE–SLSDE combined with LC–MS/MS is a simple, rapid, and environmentally friendly method for the analysis of sulfonamides and their metabolites in manure, and it could provide the basis for a risk assessment of the antibiotics in agricultural environments.  相似文献   

15.
Wang  Xia  Xu  Qing-Cai  Cheng  Chuan-Ge  Zhao  Ru-Song 《Chromatographia》2012,75(17):1081-1085

In this paper, a novel mixed ionic liquids-dispersive liquid–liquid microextraction method was developed for rapid enrichment and determination of environmental pollutants in water samples. In this method, two kinds of ionic liquids, hydrophobic ionic liquid and hydrophilic ionic liquid, were used as extraction solvent and disperser solvent, respectively. DDT and its metabolites were used as model analytes and high-performance liquid chromatography with ultraviolet detector for the analysis. Factors that may affect the extraction recoveries, such as type and volume of extraction solvent (hydrophobic ionic liquid) and disperser solvent (hydrophilic ionic liquid), extraction time, sample pH and ionic strength, were investigated and optimized. Under the optimum conditions, the linear range was 1–100 μg L−1, limits of detection could reach 0.21–0.49 μg L−1, and relative standard deviation was 6.01–8.48 % (n = 7) for the analytes. Satisfactory results were achieved when the method was applied to analyze the target pollutants in environmental water samples with spiked recoveries over the range of 85.7–106.8 %.

  相似文献   

16.
In this study, the development of a new sensitive method for the analysis of alpha-dicarbonyls glyoxal (G) and methylglyoxal (MG) in environmental ice and snow is presented. Stir bar sorptive extraction with in situ derivatization and liquid desorption (SBSE-LD) was used for sample extraction, enrichment, and derivatization. Measurements were carried out using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). As part of the method development, SBSE-LD parameters such as extraction time, derivatization reagent, desorption time and solvent, and the effect of NaCl addition on the SBSE efficiency as well as measurement parameters of HPLC-ESI-MS/MS were evaluated. Calibration was performed in the range of 1–60 ng/mL using spiked ultrapure water samples, thus incorporating the complete SBSE and derivatization process. 4-Fluorobenzaldehyde was applied as internal standard. Inter-batch precision was <12 % RSD. Recoveries were determined by means of spiked snow samples and were 78.9?±?5.6 % for G and 82.7?±?7.5 % for MG, respectively. Instrumental detection limits of 0.242 and 0.213 ng/mL for G and MG were achieved using the multiple reaction monitoring mode. Relative detection limits referred to a sample volume of 15 mL were 0.016 ng/mL for G and 0.014 ng/mL for MG. The optimized method was applied for the analysis of snow samples from Mount Hohenpeissenberg (close to the Meteorological Observatory Hohenpeissenberg, Germany) and samples from an ice core from Upper Grenzgletscher (Monte Rosa massif, Switzerland). Resulting concentrations were 0.085–16.3 ng/mL for G and 0.126–3.6 ng/mL for MG. Concentrations of G and MG in snow were 1–2 orders of magnitude higher than in ice core samples. The described method represents a simple, green, and sensitive analytical approach to measure G and MG in aqueous environmental samples.  相似文献   

17.
A new method for rapid determination of 73 target organic environmental contaminants including 18 polychlorinated biphenyls, 16 organochlorinated pesticides, 14 brominated flame retardants and 25 polycyclic aromatic hydrocarbons in fish and fish feed using gas chromatography coupled with triple quadrupole tandem mass spectrometry (GC–MS/MS) was developed and validated. GC–MS/MS in electron ionization mode was shown to be a powerful tool for the (ultra)trace analysis of multiclass environmental contaminants in complex matrices, providing measurements with high selectivity and sensitivity. Another positive aspect characterizing the newly developed method is a substantial simplification of the sample preparation, which was achieved by an ethyl acetate QuEChERS (quick, easy, cheap, effective, rugged and safe) based extraction followed by silica minicolumn clean-up. With use of this sample preparation approach the sample laboratory throughput was increased not only because six samples may be prepared in approximately 1 h, but also because all the above-mentioned groups of contaminants can be determined in a single GC–MS/MS run. Under the optimized conditions, the recoveries of all target analytes in both matrices were within the range from 70 to 120 % and the repeatabilities were 20 % or less. The method quantification limits were in the range from 0.005 to 1 μg kg–1 and from 0.05 to 10 μg kg–1 for fish muscle tissue and fish feed, respectively. The developed method was successfully applied to the determination of halogenated persistent organic pollutants and polycyclic aromatic hydrocarbons in fish and fish feed samples.  相似文献   

18.
A novel, fast and efficient method for the analysis of nitroaniline isomers as model compounds was developed using vortex-assisted supramolecular solvent liquid–liquid microextraction (VA-SMS-LLME). A vortex mixer was used as the mixer in supramolecular solvent liquid–liquid microextraction, and it decreased the extraction time greatly. Several important parameters influencing extraction efficiency, such as the type and volume of extraction solvent, pH of sample, salt effect and extraction time, were optimised in detail. Under the optimal conditions, the enrichment factor was 133 for p-nitroaniline, 98 for m-nitroaniline and 115 for o-nitroaniline, and the limits of detection by HPLC were 0.3, 1.0 and 0.5 μg L?1, respectively. Linearity with determination coefficient from 0.9981 to 0.9993 was evaluated using water samples spiked with the nitroanilines at fourteen different concentration ranging from 4 to 1000 μg L?1. The ranges of intra-day and inter-day precision (n = 5) at 10 μg L?1 of nitroanilines were 1.67–7.05% and 9.4–11.6%, respectively. The VA-SMS-LLME method was successfully applied for preconcentration of nitroanilines in environmental water samples.  相似文献   

19.
In this study, a highly sensitive and robust method using an ultra-high-performance liquid chromatography-tandem mass spectrometry combined with solid-phase extraction and ultrasonic extraction for pretreatment and silica gel purification steps has been developed for determination of 21 natural and synthetic progestagens in river surface water and sediments, and influents, effluents, and sludge from municipal wastewater treatment plants, and flush water and feces from swine farms. For the various matrices considered, the optimized method showed satisfactory performance with recoveries of 70–129 % (except AD, 5α-DHP, DPT, HPC), the limits of quantification below 2.30 ng/L for liquid samples and 2.59 ng/g for solid samples (except AD), and good linearity and reproducibility. This developed method was successfully applied in the analysis of progestagens in environmental samples from Liuxi Reservoir, Xintang municipal wastewater treatment plant, and Shunfeng swine farm in South China. Six analytes were detected at trace levels in surface water, effluent, and sediment samples. Seven analytes (0.7 (HPA)–35.1 ng/L (DGT)) were found in the influent samples and three analytes (5.6 (DGT)–11.8 ng/g (5α-DHP)) in the dewatered sludge samples. Moreover, 13 analytes were detected in swine farm, with high concentrations ranging from 23.8 ng/L (ET) to 5,024 ng/L (P) in flush water, and from 20.0 ng/g (MPA) to 1952 ng/g (P) in feces.  相似文献   

20.
A nanocomposite of silica-polydiphenylamine doped with silver nanoparticles (Ag–SiO2-PDPA) was successfully synthesized by the sol–gel process. For its preparation, PDPA was mixed with butanethiol capped Ag nanoparticles (NPs) and added to the silica sol solution. The Ag NPs were stabilized as a result of their adsorption on the SiO2 spheres. The surface characteristic of nanocomposite was investigated using scanning electron microscopy (SEM). In this work the Ag–SiO2-PDPA nanocomposite was employed as an efficient sorbent for micro-solid-phase extraction (μ-SPE) of some selected pesticides. An amount of 15 mg of the prepared sorbent was used to extract and determine the representatives from organophosphorous, organochlorine and aryloxyphenoxy propionic acids from aqueous samples. After the implementation of extraction process, the analytes were desorbed by methanol and determined using gas chromatography–mass spectrometry (GC–MS). Important parameters influencing the extraction and desorption processes such as pH of sample solution, salting out effect, type and volume of the desorption solvent, the sample loading and eluting flow rates along with the sample volume were experimentally optimized. Limits of detection (LODs) and the limits of quantification (LOQs) were in the range of 0.02–0.05 μg L−1 and 0.1–0.2 μg L−1, respectively, using time scheduled selected ion monitoring (SIM) mode. The relative standard deviation percent (RSD %) with four replicates was in the range of 6–10%. The applicability of the developed method was examined by analyzing different environmental water samples and the relative recovery (RR %) values for the spiked water samples were found to be in the range of 86–103%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号