首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 580 毫秒
1.
疏水缔合水溶性聚合物是指在聚合物亲水性大分子链上引入少量疏水基团的一类水溶性聚合物[1~5].在水溶液中,疏水基团之间由于憎水作用而发生聚集,使大分子链产生分子内与分子之间缔合.在临界缔合浓度以上,以分子间缔合为主,增大了流体力学体积,因此,具有较好的增粘作用.疏水基的加入可大幅度地改变聚合物的流变性能.在聚合物驱油中的流度控制,提高波及效率、以及调剖中起到非常重要的作用.  相似文献   

2.
研究了疏水基含量和微嵌段长度对缔合聚合物,聚(丙烯酰胺-丙烯酸钠-十六烷基二甲基烯丙基氯化铵)[P(AM-NaAA-C16DMAAC)],弹性行为的影响规律。研究结果表明,对于结构类似且具有相近零剪切粘度的缔合聚合物,疏水基含量越高,聚合物分子链间形成稠密网络结构的疏水缔合能力越强,其第一法向应力差N1越大,N1出现拐点处对应剪切速率越小,缔合聚合物溶液弹性越好;并且缔合聚合物溶液的弹性随着疏水微嵌段长度的增加先增加后降低,存在最佳微嵌段长度。因此,可以通过调整分子结构有效改变缔合聚合物溶液的弹性行为。  相似文献   

3.
以十八醇为原料,制备长链疏水单体N-十八烷基丙烯酰胺(OAM)。以丙烯酰胺(AM)、丙烯酸(AA)、二甲基二烯丙基氯化铵(DMDAAC)、N-十八烷基丙烯酰胺(OAM)为单体,通过胶束聚合法合成了水溶性疏水缔合两性四元共聚物。利用FT-IR、1HNMR、DTA-TG对聚合物的结构和热稳定性进行分析,考察了疏水基团摩尔分数、聚合物浓度对聚合物溶液表观粘度、储能模量、耗能模量等流变性能的影响,并对四元共聚物溶液的性能进行评价。结果表明,疏水两性共聚物具有很好的耐温、抗盐、耐剪切等优异性能。  相似文献   

4.
研究了疏水微嵌段长度和阴离子表面活性剂十二烷基硫酸钠(SDS)对聚/表体系的流变性的影响。研究表明,微嵌段长度对疏水缔合聚合物溶液的粘性有较大影响,嵌段越长聚合物越容易发生分子间缔合其溶液粘度越大。随着SDS的加入,各聚/表体系粘度短期内出现一个极值,然后降至一个稳定值,嵌段长度越长,其极值点越大。聚合物与SDS体系表现出的剪切增稠和粘弹性特征也随嵌段长度增加而增大。通过研究不同体系平台区模量(G0)和特征松弛时间(TR)的变化规律,发现嵌段长度和SDS含量对聚/表体系物理交联缔合点的密度有较大影响,对缔合点强度影响较小。本文有助于更好地解释微嵌段疏水缔合聚合物与表面活性剂相互作用的内在因素。  相似文献   

5.
丙烯酰胺-苯乙烯双亲嵌段共聚物水溶液的粘度性能   总被引:4,自引:0,他引:4  
通过改变丙烯酰胺 (AM)与苯乙烯 (St)两单体的投料比 ,在微乳液介质中制备了分子组成系列变化的丙烯酰胺 苯乙烯双亲嵌段共聚物 (PAM b PSt) ,使用旋转粘度计测定了共聚物水溶液的表观粘度 ,详细考察了共聚物浓度、共聚物链结构、剪切速率、盐度及温度等因素对共聚物水溶液表观粘度的影响规律 .研究结果表明 ,由于PAM b PSt分子链中的PSt疏水嵌段链段之间具有强的疏水缔合作用 ,导致其具有独特的流变性能 .当共聚物水溶液的浓度高于某一临界值后 ,疏水缔合作用以分子间的缔合为主 ,大分子链之间会形成动态物理交联网络 ,增大了流体力学体积 ,使PAM b PSt水溶液可产生良好的增稠性能 ;疏水缔合作用是一吸热过程 ,升高温度有利于分子间的缔合 ,因此PAM b PSt水溶液具有良好的耐温性 ;聚合物水溶液中盐类物质的存在 ,会增强溶剂的极性 ,有利于分子间的缔合 ,使PAM b PSt水溶液具有良好的耐盐性 .  相似文献   

6.
反相微乳液中疏水缔合型聚丙烯酰胺的合成及其性能研究   总被引:35,自引:0,他引:35  
在反相微乳液体系中合成了疏水缔合型聚丙烯酰胺 (HAPAM ) ,用Brookfield旋转粘度计测定了其水溶液性能 ,并与传统胶束聚合法制备的HAPAM作了比较 .结果显示 ,前者有更优越的耐盐和抗剪切性能 ,这主要是因为前者的大分子链上疏水共聚单体呈无规分布而后者呈嵌段分布 ,其疏水分子链以分子间而不是分子内缔合为主  相似文献   

7.
徐伟  王鹤  刘希峰 《合成化学》2022,30(12):965-971
以有机改性膨润土、2-丙烯酰胺-2-甲基丙磺酸(AMPS)、 N,N-二甲基丙烯酰胺(DMAA)和季铵盐单体D-C16Br为原料,通过原位聚合制备了一种新型水溶性疏水缔合聚合物-膨润土纳米复合材料。利用红外光谱、X-射线衍射仪对产物结构进行表征,并通过与纯共聚物AMPS/DMAA/D-C16Br相比,研究了纳米黏土材料的引入对共聚物性能的影响。结果表明:在膨润土促进聚合物分子形成疏水缔合结构的作用下,具有复合插层结构的复合材料在热稳定性、耐温性、抗剪切性和黏弹性方面均优于纯聚合物,表明该纳米复合材料较纯共聚物具有良好的应用前景。  相似文献   

8.
疏水缔合聚合物稳定乳状液的研究*   总被引:2,自引:0,他引:2  
尉云平  孙文彬  孙德军 《化学进展》2009,21(6):1134-1140
本文综述了近年来疏水缔合聚合物稳定乳状液的研究进展。论述了疏水缔合聚合物水溶液的性质,由于其较复杂的分子结构以及其分子主链上疏水基团的缔合作用,使其水溶液增稠的能力比小分子表面活性剂的增稠能力强的多。另外,对疏水缔合聚合物单独稳定乳状液的研究现状进行了介绍,其稳定乳状液的机理与小分子表面活性剂不同。同时讨论了疏水缔合聚合物与表面活性剂的相互作用,此类聚合物可与小分子表面活性剂通过静电和疏水缔合发生强烈的相互作用形成复合体系,并评述了其复配体系稳定乳状液的情况。最后总结了疏水缔合聚合物稳定乳状液的机理。  相似文献   

9.
疏水缔合水溶性聚合物溶液性能研究进展   总被引:11,自引:0,他引:11  
本文针对疏水缔合水溶性聚合物的稀溶液和半浓溶液两种情况,综述了最近十多年来溶液的性能的研究进展。文中讨论了表征分子量和疏水相互作用的特性粘数与Huggins常数。分别介绍了聚合物浓度、分子量、疏水基类型、含量、长短及序列分布、离子基团的种类和位置、剪切速率、温度以及化学相互作用对溶液性能的影响。  相似文献   

10.
以聚合物驱油为背景,研究了部分水解聚丙烯酰胺(HPAM)和缔合型部分水解聚丙烯酰胺(AHPAM)水溶液的结构与流变性质的差别.通过粘度法和静态激光光散射法得到了所分析的聚丙烯酰胺的分子量,用动态激光光散射法和粘度法分析了特定AHPAM分子缔合形态,并用流变学法测定了AHPAM在地层温度与矿化度条件下的线性粘弹性与非线性流变特性.着重讨论了临界缔合浓度的概念,研究了结构和流变性质的关系,以及分析了缔合对聚合物驱油的可能影响.实验结果表明,AHPAM水溶液在宽浓度范围存在分子缔合;一般临界缔合浓度的概念实际反映在进入亚浓溶液范围分子间缔合的效应,剪切速率约为10 s-1时,剪切粘度突降数倍,反映缔合结构在剪切场中的变化,该现象在高缠结浓度下较不明显;拉伸粘度随拉伸速率变化与HPAM定性不同,该拉伸特性反映了疏水缔合近程作用的本质.  相似文献   

11.
以异佛尔酮二异氰酸酯(IPDI)、四氟丙醇(FOH)和烯丙基聚乙二醇(APEG1200)为原料合成了含氟表面活性单体(FSM),并以FSM为疏水单体,在它的胶束溶液中实现了其与丙烯酰胺(AM)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)的水溶液共聚合,制备出含氟疏水缔合聚丙烯酰胺(FAPAM)。采用流变仪研究了FAPAM水溶液的疏水缔合性能,并考察了盐、剪切率和温度对FAPAM缔合性能的影响。结果表明,FAPAM水溶液的疏水缔合性能受FSM含量的影响,具有一定的耐盐性。FAPAM属于假塑性体系,表现出较强的抗剪切性能。适当升高温度对FAPAM水溶液的疏水缔合有一定的促进作用。  相似文献   

12.
疏水基改性聚丙烯酰胺的合成及溶液性质   总被引:4,自引:0,他引:4  
利用自由基胶束聚合法,由丙烯酰胺和甲基丙烯酸十八酯共聚合成了疏水缔合型水溶性聚合物.通过红外光谱表征了共聚物的结构,考察了共聚物浓度、盐浓度、剪切速率以及温度对共聚物溶液性能的影响.试验结果表明,聚合物质量分数大于临界缔合浓度(2%)时,溶液的粘度急剧增大;疏水缔合聚合物溶液的表观粘度随着溶液中NaCl质量分数的增加而增大.  相似文献   

13.
疏水缔合水溶性聚合物AO的溶液粘度行为研究   总被引:2,自引:1,他引:2  
研究了稀溶液中疏水链链长、无机电解质NaCl和CaCl2对疏水缔合水溶性丙烯酰胺/甲基丙烯酰氨乙基-二甲基烷基溴化铵/丙烯酸钠共聚物(AO)在水溶液中的特性粘数和Huggins常数的影响,以及聚合物AO-8的特性粘数和Huggins常数随温度的变化。结果表明:在稀溶液中,无机电解质离子强度增大,共聚物AO在NaCl和CaCl2溶液中的特性粘数减小,Huggins常数增大。在亚浓溶液范围对聚合物质量分数、温度、剪切速率及NaCl含量对聚合物的水溶液表现粘度的影响进行了研究,观察到疏水缔合聚合物盐水溶液在NaCl含量提高的情况下,出现的增粘现象。  相似文献   

14.
讨论了丙烯酰胺、3-丙烯酰胺-3-甲基丁酸钠和N-烷基丙烯酰胺三元共聚物(CAANA)的水溶液特性,并与部分水解聚丙烯酰胺(HPAM)水溶液特性相比较。芘荧光光谱分析和激光光散射仪测量结果表明。CAANA由于引入了疏水性单体,在水溶液中形成了分子间的疏水缔合作用,并使得CAANA在水溶液中具有较大的均方旋转半径,相对于HPAM,CAANA具有更好的耐温抗盐性能。在一定范围内,CAANA中引入的疏水性单体形成的缔合作用愈强,愈有利于改善聚合物的耐温抗盐性能。  相似文献   

15.
首先制备了疏水单体2-丙烯酰胺基十四烷磺酸,在此基础上又以改性Si O2功能单体为反应核制备了超支化疏水缔合聚合物(HBPAM),结构经红外光谱(FTIR)和核磁共振氢谱(1H NMR)表征证实。HBPAM在低浓度时主要是分子内缔合,表观黏度低,随着浓度的增加,分子内缔合逐渐变为分子间缔合,又因其独特的三维立体网状结构,溶液黏度显著增加。与梳形KYPAM相比,HBPAM在耐温抗盐及抗剪切方面有较高的优势:升温到85℃时黏度保留率为62.2%;100000mg·L-1Na Cl、150000 mg·L-1Na Cl、500 mg·L-1Mg Cl2、1000 mg·L-1Mg Cl2、500 mg·L-1Ca Cl2、1000 mg·L-1Ca Cl2时的黏度保留率分别为233.0%、132.9%、64.4%、26.1%、66.2%、15.7%;3400rpm/min剪切30s后HBPAM的黏度保留率为69.8%,比KYPAM高10.9%。在60℃烘箱中的30d老化实验证明,HBPAM比KYPAM有明显抗老化能力,尤其是在高矿化度条件下优势更明显。  相似文献   

16.
在体积百分浓度为50%1,3-丙二醇、0.2 mol/L Na Cl和水溶剂条件下,消除疏水缔合聚合物(HAWSP)溶液中疏水缔合作用,屏蔽溶液中的聚电解质效应,使HAWSP分子在稀溶液中处于单分子分散状态.然后利用膜孔径分离原理,选择不同孔径的微孔滤膜,用微孔滤膜流动实验装置对疏水缔合聚合物进行分级,将不同分子量的聚合物分离开来.用二次方程拟合滤出液质量-过滤时间关系曲线得到各级分聚合物溶液的质量,以分光光度法测定各级分聚合物溶液的浓度,根据质量和浓度计算得到各级分的累积百分含量.结合静态光散射和毛细管法标定了疏水缔合聚合物Mark-Houwink方程[η]=0.182M~(0.586),用于准确测定疏水缔合聚合物各个级分的分子量.选择四参数方程曲线,根据各级分的分子量M和累积百分含量W,得到分子量的分布曲线.与动态光散射分析进行比较的结果表明,两种方法测试结果一致.  相似文献   

17.
NaCl对疏水缔合聚合物溶液性质的影响研究   总被引:2,自引:0,他引:2  
研究了NaCl对疏水缔合聚合物溶液性质的影响。结果表明,所合成的疏水缔合聚合物的特性粘数随NaCl浓度的增加而降低,其表观粘度则先降低后增加,继续增加NaCl浓度,溶液粘度降低,但仍保持很高的粘度。环境扫描电镜(ESEM)研究表明,疏水缔合聚合物在去离子水体系中会形成网状结构,而在NaCl浓度为5g·L-1的溶液中,ESEM照片显示疏水缔合聚合物的结构为致密的树枝状结构,且存在一临界缔合浓度。  相似文献   

18.
疏水化水溶性聚电解质的增粘作用   总被引:31,自引:2,他引:29  
疏水化水溶性聚电解质是一种大分子主链或侧链上含有少量疏水基团的新型水溶性功能高分子材料,在水溶液中具有良好的耐盐耐温增粘作用和贮存稳定性。对该类聚电解质的特殊增粘作用及分子结构、聚合物浓度、无机盐、机械剪切作用、pH、温度、表面活性剂、老化时间及与其他疏水化水溶性聚合物作用等影响因素进行了综述。  相似文献   

19.
采用小幅低频振荡和界面张力弛豫技术, 考察了疏水缔合水溶性聚丙烯酰胺(HMPAM)在正癸烷-水界面上的扩张黏弹性质, 研究了不对称Gemini表面活性剂C12COONa-p-C9SO3Na对其界面扩张性质的影响. 研究发现, 疏水链段的存在, 使HMPAM在界面层中具有较快的弛豫过程, 扩张弹性显示出明显的频率依赖性. 表面活性剂分子可以通过疏水相互作用与聚合物的疏水嵌段在界面上形成类似于混合胶束的特殊聚集体. 表面活性剂分子与界面聚集体之间存在快速交换过程, 可以大大降低聚合物的扩张弹性. 同时, 聚合物分子链能够削弱表面活性剂分子长烷基链之间的强相互作用, 导致混合吸附膜的扩张弹性远低于单独表面活性剂吸附膜.  相似文献   

20.
对三元共聚疏水缔合聚合物(丙烯酰胺/十八烷基二甲基烯丙基氯化铵/苯乙烯)的临界缔合浓度进行研究,发现其具有二临界缔合现象以及其在二临界缔合浓度附近不同的耐温抗盐的流变行为。研究结果表明,该疏水缔合聚合物的第一临界缔合浓度(C1^*)为500mg/L,第二临界缔合浓度(C2^*)为2400mg/L;C2^*附近聚合物溶液的耐温性能较差;抗盐性能表现出三种不同的情况:随着盐质量浓度的增加,C〈C1^*时,溶液粘度下降;C1^*〈C〈C2^*时,溶液粘度先增加后下降;C〉C2^*时,溶液粘度先快速增加,后缓慢增加,最后下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号