首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The α‐arylation of carbonyl compounds is generally accomplished under basic conditions, both under metal catalysis and via aryl transfer from the diaryl λ3‐iodanes. Here, we describe an alternative metal‐free α‐arylation using ArI(O2CCF3)2 as the source of a 2‐iodoaryl group. The reaction is applicable to activated ketones, such as α‐cyanoketones, and works with substituted aryliodanes. This formal C? H functionalization reaction is thought to proceed through a [3,3] rearrangement of an iodonium enolate. The final α‐(2‐iodoaryl)ketones are versatile synthetic building blocks.  相似文献   

2.
Although phase‐transfer‐catalyzed asymmetric SNAr reactions provide unique contribution to the catalytic asymmetric α‐arylations of carbonyl compounds to produce biologically active α‐aryl carbonyl compounds, the electrophiles were limited to arenes bearing strong electron‐withdrawing groups, such as a nitro group. To overcome this limitation, we examined the asymmetric SNAr reactions of α‐amino acid derivatives with arene chromium complexes derived from fluoroarenes, including those containing electron‐donating substituents. The arylation was efficiently promoted by binaphthyl‐modified chiral phase‐transfer catalysts to give the corresponding α,α‐disubstituted α‐amino acids containing various aromatic substituents with high enantioselectivities.  相似文献   

3.
A transition‐metal‐free formal decarboxylative coupling reaction between α‐oxocarboxylates and α‐bromoketones to synthesize 1,3‐diketone derivatives is presented. In this reaction, a broad scope of substrates can be employed, and neither a metal‐based reagent nor an additional base is required. DFT calculations reveal that this reaction proceeds through a coupling followed by decarboxylation mechanism and the α‐bromoketone unprecedentedly serves as a nucleophile under neutral conditions. The rate‐determining step is an unusual hydrogen‐bond‐assisted enolate formation by thermolysis.  相似文献   

4.
Two diphosphane ligands – 2,5‐bis(2‐(diphenylphosphino)‐5‐R)phenyl)‐1,3,4‐oxadiazole ( L1 , R = H, L2 , R = OMe) and their binuclear complexes, L1Cu and L2Cu , were prepared and characterized. The molecular structures of L1Cu and L2Cu , as perchlorate salts, were established by X‐ray crystallography, which showed them to be binuclear complexes with each Cu atom tetrahedrally coordinated by two P atoms and two N atoms. The ligands and their Cu(I) complexes catalyzed Sonogashira coupling reactions of iodobenzene with phenylacetylene in the presence of K2CO3 under Pd‐free conditions. Coupling reactions catalyzed by L1 or L2 with Cu(MeCN)4ClO4 in situ exhibited better yields than those by the corresponding Cu(I) complexes L1Cu or L2Cu . Detailed studies showed L1 or L2 with Cu(MeCN)4ClO4 to be suitable catalysts for the coupling reaction of terminal alkynes and aryl halides. The coupling reactions of aryl iodides with electron‐withdrawing groups showed better results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
C(sp)–C(sp2) bond formation via Sonogashira cross‐coupling reactions on 6‐halo‐2‐cyclopropyl‐3‐(pyridyl‐3‐ylmethyl)quinazolin‐4(3H )‐ones with appropriate alkynes was explored. Optimization of reaction conditions with various catalysts, ligands, bases, and solvents was conducted. The combination of PdCl2(MeCN)2 with X‐Phos proved to be the best metal–ligand system for this conversion in the presence of triethylamine (Et3N) in tetrahydrofuran at room temperature for iodosubstrates, at 80°C for the bromosubstrates in 8 h, and also for the chlorosubstrates in 16 h. We also demonstrated synthesis of a successful diversity‐oriented synthesis library of highly functionalized quinazolinones via Cu‐free Sonogashira coupling of diverse aryl halides and azido‐alkyne (“click”) ligation reactions with substituted azides. The library exhibited significant antimicrobial activity when screened against several microorganisms.  相似文献   

6.
Pd(OAc)2‐catalyzed Sonogashira coupling reactions of alkynes and a variety of aryl halides with 1,3‐bis(5‐ferrocenylisoxazoline‐3‐yl)benzene as an efficient non‐phosphorus ligand under copper‐free conditions are presented. The main advantages over previous methodologies include low catalyst loading (0.2 mol% Pd(OAc)2 and 0.4 mol% ferrocenyl bisoxazoline ligand are sufficient for these coupling reactions), less problematic reaction medium (water–dimethylformamide) and more convenient operation (no requirement for nitrogen protection).  相似文献   

7.
A novel heterogeneous magnetic palladium nano‐biocatalyst was designed by utilizing Irish moss, a family of sulfated polysaccharides extracted from algae, as a natural biopolymer. This magnetic Irish moss decorated with palladium (Pd–Fe3O4@IM) to form a biomagnetic catalytic system was synthesized and well characterized by FT–IR analysis, X‐ray powder diffraction, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, atomic absorption spectroscopy and transmission electron microscopy. The catalyst was stable to air and moisture and displayed high catalytic activity in ligand‐free Suzuki–Miyaura cross‐coupling reactions conducted under green chemistry reaction conditions. The aromatic ketones are produced by the cross‐coupling reaction between acid chlorides and aryl boronic acid derivatives in high yields.  相似文献   

8.
A variety of chemical transformations benefit from the use of strong electron‐donating ancillary ligands, such as alkylphosphines or N‐heterocyclic carbenes when electron‐rich metal centers are required. Herein, we describe a facile and highly modular access to monodentate and bidentate imidazolin‐2‐ylidenamino‐substituted phosphines. Evaluation of the phosphine’s electronic properties substantiate that the formal replacement of alkyl or aryl groups by imidazolin‐2‐ylidenamino groups dramatically enhance their donor ability beyond that of alkylphosphines and even N‐heterocyclic carbenes. The new phosphines have been coordinated onto palladium(II) centers, and the beneficial effect of the novel substitution patterns has been explored by using the corresponding complexes in the palladium‐catalyzed Suzuki–Miyaura cross‐coupling reaction of non‐activated aryl chloride substrates.  相似文献   

9.
Copper‐catalyzed Sonogashira‐type reactions were dramatically accelerated by introducing a catalytic amount of polycyclic aromatic hydrocarbon additive. This novel catalytic system features low copper loading (0.5 mol% < Cu < 5 mol%), broad reaction scope and remarkable substrate tolerance. Both aromatic and aliphatic terminal alkynes as well as diverse aryl iodides were employed in this transformation, affording respectable yields of the desired products. The novel Cu(OTf)2/pyrene system was subsequently employed to synthesize phenylacetylene‐based fluorescent compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Copper(II) oxide nanoparticles have been synthesized from Cu(OAc)2 via a simple hydrolysis route and were found to be an efficient and inexpensive catalyst for ligand free C? S cross‐coupling reactions of malononitrile? CS2 adduct with various aryl halides. Aryl iodides and bromides, with electron‐withdrawing as well as electron‐releasing groups on the aromatic ring, undergo coupling reactions in good yields.  相似文献   

11.
We present here the first synthesis and application to Sonogashira reaction of pyridine‐bis(ferrocene‐isoxazole) Pd(II) complex 5 , prepared from 2,6‐bis‐(5‐ferrocenylisoxazole‐3‐yl)pyridine. Under copper‐ and phosphine‐free conditions, the stable complex 5 efficiently catalyzed the cross‐coupling of aryl halides with terminal alkynes in DMF–H2O with TBAB as an additive, hexahydropyridine as base and affording internal arylated alkynes in moderate to excellent yields. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Heterocyclic carbene‐Pd complex was anchored onto the mesoporous silica MCM‐41 which exhibits high catalytic activity in Heck reaction under phosphine free reaction conditions for the reaction of iodo/bromoarenes with olefinic compounds such as butyl acrylate, isopropyl acrylate and styrene. This catalytic system also showed high activity for Sonogashira coupling reaction of various aryl halides under copper, phosphine and solvent‐free reaction conditions. The air and thermally stable catalyst were reused several times without significant loss of its activity. High efficiency of the catalyst along with its recycling ability and the rather low Pd‐loading demonstrated in both Heck and Sonogashira coupling reactions are the merits of the presented catalyst system.  相似文献   

13.
In the presence of amino acids as environmentally friendly ligands, CuI‐catalyzed Sonogashira cross‐coupling of various aryl halides with phenylacetylene was conducted to afford the corresponding internal alkynes. l ‐Methionine was found to be useful for this palladium‐free and amine‐free coupling reaction. It was also found that the solvent system plays an important role in this reaction, and significantly affects the product formation and reaction rate. Sonogashira coupling of aryl iodides and aryl bromides in dimethylsulfoxide or dimethylformamide gave the coupled products in good to excellent yields. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Palladium nanoparticle‐incorporated metal–organic framework MIL‐101 (Pd/MIL‐101) was successfully synthesized and characterized using X‐ray diffraction, nitrogen physisorption, X‐ray photoelectron, UV–visible and infrared spectroscopies, and transmission electron microscopy. The characterization techniques confirmed high porosity and high surface area of MIL‐101 and high stability of nano‐size palladium particles. Pd/MIL‐101 nanocomposite was investigated for the Sonogashira cross‐coupling reaction of aryl and heteroaryl bromides with various alkynes under copper‐free conditions. The reusability of the catalyst was tested for up to four cycles without any significant loss in catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
An air‐stable, copper‐free and highly efficient Dppc+PF6?–PdCl2–[bmim][PF6] catalytic system has been developed for the Sonogashira coupling reaction of aryl iodides with various aryl‐ and alkylacetylenes. The catalytic system allows for facile separation and can be recycled at least eight times with minimal loss of activity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
We report high‐performance I+/H2O2 catalysis for the oxidative or decarboxylative oxidative α‐azidation of carbonyl compounds by using sodium azide under biphasic neutral phase‐transfer conditions. To induce higher reactivity especially for the α‐azidation of 1,3‐dicarbonyl compounds, we designed a structurally compact isoindoline‐derived quaternary ammonium iodide catalyst bearing electron‐withdrawing groups. The nonproductive decomposition pathways of I+/H2O2 catalysis could be suppressed by the use of a catalytic amount of a radical‐trapping agent. This oxidative coupling tolerates a variety of functional groups and could be readily applied to the late‐stage α‐azidation of structurally diverse complex molecules. Moreover, we achieved the enantioselective α‐azidation of 1,3‐dicarbonyl compounds as the first successful example of enantioselective intermolecular oxidative coupling with a chiral hypoiodite catalyst.  相似文献   

17.
Concerted nucleophilic aromatic substitution (CSNAr) has emerged as a powerful mechanistic manifold, in which nucleophilic aromatic substitution can proceed in one step without the need to form a Meisenheimer intermediate. However, all of the CSNAr reactions reported thus far require a stoichiometric strong base or activating reagent, and no catalytic variants have yet been reported. Herein, we report an N‐heterocyclic carbene (NHC)‐catalyzed intramolecular cyclization of acrylamides that contain a 2‐fluorophenyl group on the nitrogen through a CSNAr reaction. By using this catalytic method, it is possible to synthesize an array of quinolin‐2‐one derivatives, which are common structural motifs in pharmaceuticals and organic materials. DFT calculations unambiguously revealed that this reaction proceeds through the concerted nucleophilic aromatic substitution of aryl fluorides, in which a stereoelectronic σ (Cipso‐Cβ)→ σ*(Cipso‐F) interaction critically contributes to the stabilization of the transition state for the cyclization.  相似文献   

18.
In Pd‐catalyzed C? N cross‐coupling reactions, α‐branched secondary amines are difficult coupling partners and the desired products are often produced in low yields. In order to provide a robust method for accessing N‐aryl α‐branched tertiary amines, new catalysts have been designed to suppress undesired side reactions often encountered when these amine nucleophiles are used. These advances enabled the arylation of a wide array of sterically encumbered amines, highlighting the importance of rational ligand design in facilitating challenging Pd‐catalyzed cross‐coupling reactions.  相似文献   

19.
This paper describes a palladium/copper‐catalyzed decarboxylative coupling of aryl iodides with α‐oxocarboxylates. The cross‐coupling reaction gives high chemical yields of aryl ketones and has wide functional group tolerance, making the transformation an attractive alternative to the traditional cross‐coupling approaches for aryl ketones. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, synthesis, characterization and catalytic performance of a novel supramolecular photocatalytic system including palladium (II) encapsulated within amine‐terminated poly (triazine‐triamine) dendrimer modified TiO2 nanoparticles (Pd (II) [PTATAD] @ TiO2) is presented. The obtained nanodendritic catalyst was characterized by FT‐IR, ICP‐AES, XPS, EDS, TEM, TGA and UV‐DRS. The as‐prepared nanodendritic catalyst was shown to be highly active, selective, and recyclable for the Suzuki–Miyaura and Sonogashira cross‐coupling of a wide range of aryl halides including electron‐rich and electron‐poor and even aryl chlorides, affording the corresponding biaryl compounds in good to excellent yields under visible light irradiation. This study shows that visible light irradiation can drive the cross‐coupling reactions on the Pd (II) [PTATAD] @ TiO2 under mild reaction conditions (27–30 °C) and no additional additives such as cocatalysts or phosphine ligands. So, we propose that the improved photoactivity predominantly benefits from the synergistic effects of Pd (II) amine‐terminated poly (triazine‐triamine) dendrimer on TiO2 nanoparticles that cause efficient separation and photogenerated electron–hole pairs and photoredox capability of nanocatalyst which all of these advantages due to the tuning of band gap of catalyst in the visible light region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号