首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
A Ph3P‐catalyzed cyclization of α‐halogeno ketones 2 with dialkyl acetylenedicarboxylates (=dialkyl but‐2‐ynedioates) 3 produced halogenated α,β‐unsaturated γ‐butyrolactone derivatives 4 in good yields (Scheme 1, Table). The presence of electron‐withdrawing groups such as halogen atoms at the α‐position of the ketones was necessary in this reaction. Cyclization of α‐chloro ketones resulted in higher yields than that of the corresponding α‐bromo ketones. Dihalogeno ketones similarly afforded the expected γ‐butyrolactone derivatives in high yields.  相似文献   

2.
Synthesis of the C?C bonds of ketones relies upon one high‐availability reagent (carboxylic acids) and one low‐availability reagent (organometallic reagents or alkyl iodides). We demonstrate here a ketone synthesis that couples two different carboxylic acid esters, N‐hydroxyphthalimide esters and S‐2‐pyridyl thioesters, to form aryl alkyl and dialkyl ketones in high yields. The keys to this approach are the use of a nickel catalyst with an electron‐poor bipyridine or terpyridine ligand, a THF/DMA mixed solvent system, and ZnCl2 to enhance the reactivity of the NHP ester. The resulting reaction can be used to form ketones that have previously been difficult to access, such as hindered tertiary/tertiary ketones with strained rings and ketones with α‐heteroatoms. The conditions can be employed in the coupling of complex fragments, including a 20‐mer peptide fragment analog of Exendin(9–39) on solid support.  相似文献   

3.
Synthesis of the C?C bonds of ketones relies upon one high‐availability reagent (carboxylic acids) and one low‐availability reagent (organometallic reagents or alkyl iodides). We demonstrate here a ketone synthesis that couples two different carboxylic acid esters, N‐hydroxyphthalimide esters and S‐2‐pyridyl thioesters, to form aryl alkyl and dialkyl ketones in high yields. The keys to this approach are the use of a nickel catalyst with an electron‐poor bipyridine or terpyridine ligand, a THF/DMA mixed solvent system, and ZnCl2 to enhance the reactivity of the NHP ester. The resulting reaction can be used to form ketones that have previously been difficult to access, such as hindered tertiary/tertiary ketones with strained rings and ketones with α‐heteroatoms. The conditions can be employed in the coupling of complex fragments, including a 20‐mer peptide fragment analog of Exendin(9–39) on solid support.  相似文献   

4.
Rhodium‐catalyzed 1,4‐addition of lithium 5‐methyl‐2‐furyltriolborate ([ArB(OCH2)3CCH3]Li, Ar=5‐methyl‐2‐furyl) to unsaturated ketones to give β‐furyl ketones was followed by ozonolysis of the furyl ring for enantioselective synthesis of γ‐oxo‐carboxylic acids. [Rh(nbd)2]BF4 (nbd=2,5‐norbornadiene) chelated with 2,2′‐bis(diphenylphosphino)‐1,1′‐binaphthyl (binap) or 2,3‐bis(diphenylphosphino)butane (chiraphos) gave high yields and high selectivities in a range of 91–99 % ee at 30 °C in a basic dioxane/water solution. The corresponding reaction of unsaturated esters, such as methyl crotonate, had strong resistance under analogous conditions, but the 1,4‐adduct was obtained in 70 % yield and with 94 % ee when more electron‐deficient phenyl crotonate was used as the substrate.  相似文献   

5.
Zirconium(IV) chloride catalyzed efficient one-pot synthesis of β-amino/β-acetamido carbonyl compounds at room temperature is described. In the presence of ZrCl4, the three-component Mannich-type reaction via a variety of in situ generated aldimines, with various ketones, aromatic aldehydes and aromatic amines in ethanol, led to the formation of β-amino carbonyl compounds and the four-component Mannich-type reaction of aromatic aldehydes with various ketones, acetonitrile and acetyl chloride resulted in the corresponding β-acetamido carbonyl compounds in high to excellent yields. This methodology has also been applied towards the synthesis of dimeric β-amino/β-acetamido carbonyl compounds.  相似文献   

6.
An efficient synthesis of 1,2,3‐triaroylindolizines has been developed via CuBr2‐promoted reaction of three molecules of aromatic methyl ketones and one molecule of pyridine derivative. A wide range of methyl aryl ketones and methyl heteroaryl ketones took part in the reaction and generate 1,2,3‐triaroylindolizines in good yields. This protocol also features such advantages as mild reaction conditions and high atom economy and step economy.  相似文献   

7.
N‐Methyl indole reacts with but‐2‐yn‐1‐ol in the presence of PtCl2 in MeOH giving indole derivatives having a substituted 3‐oxobutyl group at the 3‐position in good yield. Under the reaction conditions, various substituted indoles and substituted propargyl alcohols are successfully involved in the reaction giving the corresponding addition products in good to moderate yields. The catalytic reaction can be further extended to N‐phenyl pyrrole. In the present multi‐step reaction, PtCl2 likely plays dual roles: as the catalyst for the rearrangement of propargyl alcohols to the corresponding alkenyl ketones and as the catalyst for the addition of indoles to the alkenyl ketones. Experimental evidence is provided to support the proposed mechanism.  相似文献   

8.
O,O'Diethyl acetals were prepared in high yields under mild conditions via the reaction of triethyl orthoformate with aldehydes and ketones in absolute ethanol in the presence of as low as 0.1 tool% of Yb(OTf)3. Using the same catalyst in THF-H2O, these O,O'-diethyl acetals could be converted to the corresponding carbonyl compounds efficiently. This new protection-deprotection protocol presents the advantages of ease of execution, high efficiency and good chemoselectivity.  相似文献   

9.
The chemoselectivity in the reaction of 2‐diazo‐3‐oxo‐3‐phenylpropanal ( 1 ) with aldehydes and ketones in the presence of Et3N was investigated. The results indicate that 1 reacts with aromatic aldehydes with weak electron‐donating substituents and cyclic ketones under formation of 6‐phenyl‐4H‐1,3‐dioxin‐4‐one derivatives. However, it reacts with aromatic aldehydes with electron‐withdrawing substituents to yield 1,3‐diaryl‐3‐hydroxypropan‐1‐ones, accompanied by chalcone derivatives in some cases. It did not react with linear ketones, aliphatic aldehydes, and aromatic aldehydes with strong electron‐donating substituents. A mechanism for the formation of 1,3‐diaryl‐3‐hydroxypropan‐1‐ones and chalcone derivatives is proposed. We also tried to react 1 with other unsaturated compounds, including various olefins and nitriles, and cumulated unsaturated compounds, such as N,N′‐dialkylcarbodiimines, phenyl isocyanate, isothiocyanate, and CS2. Only with N,N′‐dialkylcarbodiimines, the expected cycloaddition took place.  相似文献   

10.
A regioselective Biginelli‐like reaction of alicyclic mono‐ketones, aromatic aldehydes, and urea in ionic liquid [BPY]BF4 has been investigated. The process is controlled by the size of alicyclic mono‐ketones and the steric hindrance of aromatic aldehydes. The reaction of cyclopentanone with urea and aromatic aldehydes afforded 7‐arylidene‐3,4,6,7‐tetrahydro‐4‐aryl‐1H‐cyclopenta[d]pyrimidin‐2(5H)‐ones ( 4 ). When cyclohexanone was used as the source of active methylene to react with urea and aldehydes with slight steric hindrance groups under the same condition, 8‐arylidene‐3,4,5,6,7, 8‐hexahydro‐4‐arylquinazolin‐2(1H)‐ones ( 6 ), a homologue of 4 , were yielded, whereas 4,8‐bisaryloc‐tahydro‐1H‐pyrimido[5,4‐i]‐quinazoline‐2,10(3H,11H)‐diones ( 7 ) were obtained via the simple one‐pot reaction of cyclohexanone, urea, and aromatic aldehydes with high steric hindrance groups. The possible transitional states and mechanism of the regioselective process were discussed.  相似文献   

11.
A novel Biginelli‐like cyclocondensation reaction is efficiently catalyzed by iodotrimethylsilane (Me3SiI) in MeCN. The reaction proceeds at room temperature by a three‐component one‐pot condensation of ketones with aldehydes and urea to afford 5‐unsubstituted 3,4‐dihydropyrimidin‐2(1H)‐ones in good yields (Scheme 1 and Table).  相似文献   

12.
4,6‐Substituted‐2‐alkylthio‐6H‐1,3‐thiazines were synthesized by the reaction of S‐alkyl dithiocarbamates and α, β‐unsaturated ketones in the presence of ZrCl4/TMSCl. The procedure is simple and efficient and gives good to high yields of products.  相似文献   

13.
A wide variety of spiroquinazolinone derivatives have been synthesized via a one‐pot three‐component reaction of isatoic anhydride, cyclic ketones, and hydrazides in the presence of catalytic amount (20 mol%) of H3PO3 in ethanol. Mild reaction conditions, high atom economy, operational simplicity, and good to high yields are the key advantages of the present protocol.  相似文献   

14.
A true one‐step one‐pot aldol‐reaction procedure has been developed for the synthesis of β‐hydroxy ketones and esters. The reaction can be run at room temperature by simply mixing four components in CH2Cl2, with medium‐to‐high yields of aldol products obtained after regular workup. Mechanistically, the process probably proceeds via Mg‐enolate formation of the ketone or ester component, followed by addition to the electrophilic aldehyde.  相似文献   

15.
《中国化学》2017,35(7):1141-1148
Synthesis of di‐substituted aryl olefins via a Pd(0)‐catalyzed cross‐coupling reaction of biphenyl ketones/aldehydes, tosylhydrazide, and aryl bromides (or benzyl halides) was developed. This methodology was achieved by one‐pot two‐step reactions involving the preparation of N ‐tosylhydrazones by reacting tosylhydrazide with biphenyl ketones/aldehydes, followed by coupling with aryl bromides (or benzyl halides) in the presence of Pd(PPh3 )4 and lithium t ‐butoxide to produce various di‐substituted aryl olefins in moderate to good yields.  相似文献   

16.
As alternatives to the common tertiary phosphine/Pd systems, well‐defined N‐heterocyclic carbene–Pd complexes have been proven to be highly efficient precatalysts for intermolecular direct annalution of o‐haloanilines and ketones at lower catalyst loadings. A highly efficient and practical protocol for synthesis of functionalized indoles was developed using (IPr)Pd(acac)Cl as catalyst. Both o‐bromoanilines and o‐chloroanilines gave rise to efficient coupling under the reaction conditions. Related to acyclic ones, cyclic ketones coupled more effectively with o‐haloanilines. With [Pd(IPr)2] as catalyst, the base‐sensitive groups including OH and CO2H groups could be tolerated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Aluminum chloride (AlCl3) efficiently catalyzes one‐pot multicomponent condensation of enolizable ketones or alkyl acetoacetates with aldehydes, acetonitrile and acetyl chloride to afford β‐acetamido ketone or ester derivatives in high to excellent yields and in relatively short reaction times. Moreover, by this synthetic method, some novel β‐acetamido ketones and esters (i.e. one complex structure) are prepared.  相似文献   

18.
The PdII‐catalyzed dehydroboration of boron enolates generated from ketones and 9‐iodo‐9‐borabicyclo[3.3.1]nonane was achieved, providing a synthetically versatile protocol from ketones to α,β‐unsaturated ketones. The PdII compound employed in this reaction worked catalytically in the presence of Cu(OAc)2. The high trans‐selectivity of the olefinic moiety was observed. Aryl halide moieties (‐Br and ‐Cl) remained intact for this reaction in spite of the presence of a Pd species. An ester substrate could also be applied when a stoichiometric amount of PdII was used. The crossover reactions using boron and silyl enolates revealed that the oxidation reaction is much faster than the Saegusa‐Ito reaction.  相似文献   

19.
Cation‐binding salen nickel catalysts were developed for the enantioselective alkynylation of trifluoromethyl ketones in high yield (up to 99 %) and high enantioselectivity (up to 97 % ee). The reaction proceeds with substoichiometric quantities of base (10–20 mol % KOt‐Bu) and open to air. In the case of trifluoromethyl vinyl ketones, excellent chemo‐selectivity was observed, generating 1,2‐addition products exclusively over 1,4‐addition products. UV‐vis analysis revealed the pendant oligo‐ether group of the catalyst strongly binds to the potassium cation (K+) with 1:1 binding stoichiometry (Ka=6.6×105 m ?1).  相似文献   

20.
N‐Allyl, N‐cinnamyl, and N‐(3‐trimethylsilyl)propargyl derivatives of 4‐isopropyl‐5,5‐diphenyloxazolidin‐2‐one (DIOZ) are prepared by lithiation of the parent DIOZ (with BuLi in THF) and reaction with the corresponding bromides (Scheme 1). Lithiation in the same solvent, with deprotonation by BuLi on the allylic or propargylic CH2 group at dry‐ice temperature, provides colorful solutions, which are either combined with aldehydes or ketones directly or after addition (with or without warming) of (Me2N)3TiCl or (i‐PrO)3TiCl. Conditions have thus been elaborated under which all three types of conjugated lithium compounds react in the γ‐position with respect to the oxazolidinone N‐atom: carbamoyl derivatives of enamines and allenyl amines are formed in yields ranging from 60 to 80% and with diastereoselectivities up to 98% (Schemes 2–5). The C=C bond of the N‐hydroxyalkenyl groups has (Z)‐configuration (products 5 and 8 ), the allene chirality axis has (M)‐configuration (products 9 ), and the addition to aldehydes and unsymmetrical ketones has taken place preferentially from the Si face. A mechanistic model is proposed that is compatible with the stereochemical outcome (assuming kinetic control and disregarding the presence of Li and Ti species in the reaction mixture; cf. L, M in Fig. 4). Hydrolysis of the enamine derivatives leads to lactols, oxidizable to γ‐lactones, with recovery of the crystalline oxazolidinone, as demonstrated in three cases (Scheme 6). Thus, the application of chiral oxazolidinone auxiliaries (cf. Figs. 1 and 2) has been extended to the overall enantioselective preparation of homoaldols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号