首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It is established that unmodified Ni catalysts and Ni catalysts modified with Mo- and W-heteropoly compounds (HPC) of the Keggin type (6 wt %) along with catalyst containing 6% K4SiW12O40/Al2O3 appear to be active in the reaction of phenylacetylene (PA) hydrogenation. At low temperatures (100?C150°C), the selectivity of the process strongly depends on the nature of the modifier or second active metal (Pd). It is demonstrated that in the presence of 6% Ni-0.015% Pd/Al2O3 modified by HPC K4SiMo6W6O40, the conversion of PA at 100°C was 87% at a styrene: ethylbenzene ratio of 1: 1. The acidity of HPC is found to influence the side reactions of alkylation and condensation. Transmission electron microscopy demonstrates that Ni in modified HPC 6% Ni/Al2O3 is present in the form of the particles below 2 nm in size, and these particles of Ni become larger when affected by the reaction medium during PA hydrogenation.  相似文献   

2.
Samples of Pd/C and Pd–Ag/C, where C represents carbon nanofibers (CNFs), are synthesized by methane decomposition on a Ni–Cu–Fe/Al2O3 catalyst. The properties of Pd/CNF are studied in the reaction of selective hydrogenation of acetylene into ethylene. It is found that the activity of the catalyst in hydrogenation reaction increases, while selectivity decreases considerably when the palladium content rises. The obtained dependences are caused by the features of palladium’s interaction with the carbon support. At a low Pd content (up to 0.04 wt %) in the catalyst, the metal is inserted into the interlayer space of graphite and the catalytic activity is zero. It is established by EXAFS that the main share of palladium in catalysts of 0.05–0.1 wt % Pd/CNF constitutes the metal in the atomically dispersed state. The coordination environment of palladium atoms consists of carbon atoms. An increase in the palladium content in a Pd/CNF catalyst up to 0.3 wt % leads to the formation of highly dispersed (0.8–1 nm) Pd particles. The Pd/CNF samples where palladium is mainly in the atomically dispersed state exhibit the highest selectivity in the acetylene hydrogenation reaction. The addition of silver to a 0.1 wt % Pd/CNF catalyst initially probably leads to the formation of Pd–Ag clusters and then to alloyed Pd–Ag particles. An increase in the silver content in the catalyst above 0.3% causes the enlargement of the alloyed particles and the palladium atoms are blocked by a silver layer, which considerably decreases the catalytic activity in the selective hydrogenation of acetylene.  相似文献   

3.
Single-atom catalysts (SACs) have shown superior activity and/or selectivity for many energy- and environment-related reactions, but their stability at high site density and under reducing atmosphere remains unresolved. Herein, we elucidate the intrinsic driving force of a Pd single atom with high site density (up to 5 wt %) under reducing atmosphere, and its unique catalytic performance for hydrogenation reactions. In situ experiments and calculations reveal that Pd atoms tend to migrate into the surface vacancy-enriched MoC surface during the carburization process by transferring oxide crystals to carbide crystals, leading to the surface enrichment of atomic Pd instead of formation of particles. The Pd1/α-MoC catalyst exhibits high activity and excellent selectivity for liquid-phase hydrogenation of substituted nitroaromatics (>99 %) and gas-phase hydrogenation of CO2 to CO (>98 %). The Pd1/α-MoC catalyst could endure up to 400 °C without any observable aggregation of single atoms.  相似文献   

4.
萘在贵金属Pd、Pt及Pd-Pt催化剂上的加氢活性及耐硫性能   总被引:1,自引:0,他引:1  
采用等体积浸渍法制备了SiO2-Al2O3负载的Pd、Pt单金属催化剂及Pd/Pt摩尔比分别为1∶1、1∶4、4∶1的双金属催化剂(Pd1Pt1、Pd1Pt4、Pd4Pt1),对其进行X射线衍射(XRD)、透射电镜(TEM)、CO化学吸附和X射线光电子能谱(XPS)表征,并详细考察了各催化剂的萘加氢活性和耐硫性能.结果表明,在实验考察范围内,Pd4Pt1催化剂上的萘转化率最高可达98.2%,全饱和产物十氢萘选择性最高可达93.6%,十氢萘反/顺生成率之比最高可达7.8,均高于单金属Pd(97.5%,59.1%,4.3)和Pt(96.8%,39.9%,2.9)催化剂的值.萘在三种催化剂上的加氢速率顺序为vPd4Pt1vPdvPt.添加二苯并噻吩(DBT)后Pd4Pt1上的萘转化率和十氢萘选择性仍然最高,十氢萘反/顺比在Pt催化剂上不受影响,在Pd4Pt1催化剂上稍有降低,而在Pd催化剂上降低明显.在三种不同Pd/Pt摩尔比的双金属催化剂中,Pd4Pt1催化剂上的萘转化率和十氢萘选择性在添加DBT前后都是最佳的.  相似文献   

5.
Selectivity of product formation has been tested in hydrogenation of acetylene over 0.3 wt.% Pd/-alumina and 0.5 wt.% Pd/TiO2catalysts. Non-steady-state regime of catalyst operation was tested in pulse-flow experiments. Significant carbon poisoning appears to be a necessaryrequisite for selective formation of ethylene. The effect of hydrogen and acetylene partial pressure has been tested on the selectivity of C4products. At 273–298 K the catalysts showed 26–35% selectivity for C4 hydrocarbons and <2.5% for ethane production at conversionsof 30–40%. Deuterium distribution in ethylene and 1,3-butadiene and the deuterium content of the surface hydrogen pool have been compared and mechanismof diene formation has been discussed.  相似文献   

6.
Nanostructures of the multimetallic catalysts offer great scope for fine tuning of heterogeneous catalysis, but clear understanding of the surface chemistry and structures is important to enhance their selectivity and efficiency. Focussing on a typical Pt−Pd−Ni trimetallic system, we comparatively examined the Ni/C, Pt/Ni/C, Pd/Ni/C and Pt−Pd/Ni/C catalysts synthesized by impregnation and galvanic replacement reaction. To clarify surface chemical/structural effect, the Pt−Pd/Ni/C catalyst was thermally treated at X=200, 400 or 600 °C in a H2 reducing atmosphere, respectively termed as Pt−Pd/Ni/C−X. The as-prepared catalysts were characterized complementarily by XRD, XPS, TEM, HRTEM, HS-LEIS and STEM-EDS elemental mapping and line-scanning. All the catalysts were comparatively evaluated for benzaldehyde and styrene hydrogenation. It is shown that the “PtPd alloy nanoclusters on Ni nanoparticles” (PtPd/Ni) and the synergistic effect of the trimetallic Pt−Pd−Ni, lead to much improved catalytic performance, compared with the mono- or bi- metallic counterparts. However, with the increase of the treatment temperature of the Pt−Pd/Ni/C, the catalytic performance was gradually degraded, which was likely due to that the favourable nanostructure of fine “PtPd/Ni” was gradually transformed to relatively large “PtPdNi alloy on Ni” (PtPdNi/Ni) particles, thus decreasing the number of noble metal (Pt and Pd) active sites on the surface of the catalyst. The optimum trimetallic structure is thus the as synthesised Pt−Pd/Ni/C. This work provides a novel strategy for the design and development of highly efficient and low-cost multimetallic catalysts, e. g. for hydrogenation reactions.  相似文献   

7.
为了提高苯乙炔加氢反应中的苯乙烯选择性, 本文采用“胶体-等体积浸渍”两步法制备了Pd-Cu/γ-Al2O3双金属催化剂. 利用高分辨率透射电镜(HRTEM)、X射线光电子能谱(XPS)、CO脉冲化学吸附、N2物理吸附、电感耦合等离子体原子发射光谱(ICP-AES)等技术表征了Pd-Cu/γ-Al2O3的结构性质, 考察了Cu/Pd 摩尔比、Pd负载量以及金属引入顺序对Pd-Cu/γ-Al2O3催化苯乙炔选择性加氢性能的影响. 结果表明, 与Pd/γ-Al2O3单金属催化剂相比, Pd-Cu/γ-Al2O3的苯乙烯选择性大幅度提高, 尤其是当Pd负载量为0.3%(w), 且Cu/Pd摩尔比为0.6时, Pd-Cu/γ-Al2O3表现出优异的加氢选择性; 在0.1 MPa和40 ℃下, 当苯乙炔转化率为90%时, 双金属催化剂的苯乙烯选择性可达95%; 当转化率达到99%以上时, 苯乙烯选择性仍保持在82%左右. 分析表明, Pd-Cu/γ-Al2O3中形成了Pd-Cu合金, 但是两种金属间不存在电子转移, Cu对Pd的几何效应才是导致Pd-Cu/γ-Al2O3苯乙烯选择性增加的主要原因.  相似文献   

8.
Pd/Sibunit and Pd–M/Sibunit (M = Ga, Zn, or Ag) catalysts have been synthesized, and their catalytic properties in liquid-phase acetylene hydrogenation have been investigated. Doping of the palladium catalyst with a metal M leads to the formation of the Pd2Ga, PdZn, or Pd0.46Ag0.54 bimetallic compound. The bimetallic particles are much smaller (1.6–2.0 nm) than the monometallic palladium particles (4.0 nm). Doping with zinc raises the ethylene selectivity by 25% without affecting the activity of the catalyst. Specific features of the effect of each of the dopants on palladium are reported.  相似文献   

9.
Pd/Ni bimetallic catalysts were prepared by replacement reactions, characterized by X-ray diffraction, CO chemisorption and H2 temperature-programmed desorption, and evaluated for hydrogenation of cyclohexene, styrene and acetone. The results show that Pd atoms are monolayer-dispersed on the Ni surface in these Pd/Ni catalysts. Consequently, Pd/Ni catalysts are much more active than Pd/Ni and Pd/c-Al2O3 with the same Pd loading prepared by the conventional impregnation method. __________ Translated from Chinese Journal of Catalysis, 2007, 28(8): 676–680 [译自: 催化学报]  相似文献   

10.
利用ALD制备了TiO2限域的Pd催化剂, 研究了限域空间内Pd纳米颗粒与TiO2的界面作用对1,4-丁炔二醇(BYD)加氢性能的影响. 相比于管外负载型催化剂, 限域催化剂在催化1,4-丁炔二醇选择性加氢反应中体现出非常高的催化活性和1,4-丁烯二醇的选择性. HR-TEM、 EDX-Mapping、 XRD、 XPS和H2-TPR表征说明, 限域体系中Pd-TiO2的界面相互作用强于传统TiO2表面负载型Pd催化剂, 这种强界面作用不仅能够提高BYD的加氢活性, 也可抑制半加氢产物1,4-丁烯二醇的异构化和深度加氢, 提高1,4-丁烯二醇的选择性, 而且限域结构也可阻止管内壁Pd纳米颗粒的脱落, 提高催化剂的稳定性.  相似文献   

11.
Catalytic performance of gallia-supported iridium catalysts in the reaction of selective hydrogenation of crotonaldehyde in the gas phase was studied and compared to that of platinum and ruthenium catalysts. The best catalytic properties in terms of the selectivity to crotyl alcohol are shown by 5 wt % Pt/α-Ga2O3 and 5 wt % Ir/α-Ga2O3 catalysts prepared from nonchlorine precursors: Pt(acac)2 and Ir(acac)3, but for the 5 wt % Pt/α-Ga2O3 a very high selectivity of 75% at the high conversion (ca. 60%) is observed. A high selectivity of galia-supported iridium and platinum catalysts was explained by the surface reducibility of gallium oxide leading to covering (decoration) of platinum and iridium by gallium suboxides and the promoting effect of gallium.  相似文献   

12.
Photo-assisted reverse water gas shift (RWGS) reaction is regarded green and promising in controlling the reaction gas ratio in Fischer Tropsch synthesis. But it is inclined to produce more byproducts in high H2 concentration condition. Herein, LaInO3 loaded with Ni-nanoparticles (Ni NPs) was designed to obtain an efficient photothermal RWGS reaction rate, where LaInO3 was enriched with oxygen vacancies to roundly adsorbing CO2 and the strong interaction with Ni NPs endowed the catalysts with powerful H2 activity. The optimized catalyst performed a large CO yield rate (1314 mmol gNi−1 h−1) and ≈100 % selectivity. In situ characterizations demonstrated a COOH* pathway of the reaction and photoinduced charge transfer process for reducing the RWGS reaction active energy. Our work provides valuable insights on the construction of catalysts concerning products selectivity and photoelectronic activating mechanism on CO2 hydrogenation.  相似文献   

13.
Pd–In/Al2O3 and Pd–In/MgAl2O4 catalysts prepared from dinuclear Pd–In acetate complexes were studied in the hydrogenation of alkyne compounds with different structures. The Pd–In catalysts demonstrate high selectivity in the hydrogenation of internal alkynes comparable with that of the Lindlar catalyst. Similar activity/selectivity characteristics are reached at a significantly lower Pd content. For terminal alkynes, the favorable effect of Indium introduction is considerably less pronounced. An analysis of the In effect on the selectivity and the ratio between the rates of the first and second hydrogenation steps suggests that the reaction selectivity is determined to a large extent by a thermodynamic factor (adsorption–desorption equilibrium between the reactants and the reaction products).  相似文献   

14.
In this work, the influence of metallic dopant addition in 10 wt % Ni/γ-Al2O3 catalyst on the material physico-chemical properties and catalytic activity for the toluene steam reforming was studied. Seventeen doped Ni/γ-Al2O3 catalysts were synthesized by the sol–gel process. The aim of this study was to determine which elements were the most suitable for the doping of 10 wt % Ni/γ-Al2O3 catalysts. The influence of the dopants was studied through different physico-chemical techniques. It appeared that some dopants showed lower catalytic performances due to high carbon deactivation. On the contrary, some dopants increased the resistance to coking while also improving the catalytic activity. Different mechanisms were proposed to explain these modifications of catalytic behavior. Among all doped Ni/γ-Al2O3 catalysts, the samples that combined Mn + Mo or Co + Mo dopants showed the best catalytic performances at 650 °C. Both samples showed high toluene reforming activity and low amounts of carbon deposit.  相似文献   

15.
The Co-Pd/SiO2 and Co-Cu/SiO2 catalysts were prepared via solvated metal atom impregnation (SMAI) method and investigated for the Fischer-Tropsch (F-T) synthesis. The catalysts contained 5wt.% Co and a weight ratio of Pd (or Cu) to Co of 1/30. XPS indicated that Co, Pd and Cu were in metallic state. The results of XPS and magnetic measurements showed that Co and Pd (Cu) were alloyed. The Co particles on the catalysts were very highly dispersed and they displayed superparamagnetic behavior. FT-IR indicated that the electrons shifted from Cu and Pd to Co. Catalytic tests showed that CO hydrogenation rates followed the order Pd-Co > Cu-Co > Co.   相似文献   

16.
Electro-reforming of Polyethylene-terephthalate-derived (PET-derived) ethylene glycol (EG) into fine chemicals and H2 is an ideal solution to address severe plastic pollution. Here, we report the electrooxidation of EG to glycolic acid (GA) with a high Faraday efficiency and selectivity (>85 %) even at an industry-level current density (600 mA cm−2 at 1.15 V vs. RHE) over a Pd−Ni(OH)2 catalyst. Notably, stable electrolysis over 200 h can be achieved, outperforming all available Pd-based catalysts. Combined experimental and theoretical results reveal that 1) the OH* generation promoted by Ni(OH)2 plays a critical role in facilitating EG-to-GA oxidation and removing poisonous carbonyl species, thereby achieving high activity and stability; 2) Pd with a downshifted d-band center and the oxophilic Ni can synergistically facilitate the rapid desorption and transfer of GA from the active Pd sites to the inactive Ni sites, avoiding over-oxidation and thus achieving high selectivity.  相似文献   

17.
The influence of bismuth addition on the activity and selectivity of palladium catalysts supported on SiO2 in the reaction of glucose oxidation to gluconic acid was studied. The catalysts modified with Bi show much better selectivity and activity than palladium catalysts. The XRD studies proved the presence of intermetallic compounds BiPd and Bi2Pd, which probably increase activity and selectivity of PdBi/SiO2 catalysts in the oxidation of glucose. The TPO studies of catalysts containing 5 wt.% Pd/SiO2, 3 wt.% Bi/SiO2 and 5 wt.% Pd–5 wt.% Bi/SiO2 show that palladium oxidation occurs at much higher temperatures than in the case of bismuth. The maximum rate of Pd oxidation occurs at around 580 K while the maximum rate of Bi oxidation takes place at around 430 K. Considering the above facts, a reaction involving bimetallic catalysts in oxidizing atmosphere at 333 K should not lead to surface oxidation of palladium and thus their deactivation.  相似文献   

18.
Summary Pt/SiO2 and Pt-Fe/SiO2 catalysts having a Pt loading ranging from 0.5 to 3.0 wt.% and a fixed amount of Fe in the bimetallic series, 1.0 wt.% have been prepared by the impregnation procedure, followed by calcinations and reduction in H2 flow at 773 K. The samples were characterized by N2 adsorption at 77 K, H2 chemisorption at 298 K, TEM, TPR and XPS. The hydrogenation of citral at 363 K and 8.3 bar over a series of Pt/SiO2 and Pt-Fe/SiO2 catalysts was studied. Thus, the selectivity towards the unsaturated alcohol (geraniol + nerol) decreases at high loads of monometallic Pt. An effect of polarization of the C=O bond due to the presence of Fe3+ species leads to catalysts active and highly selective to the hydrogenation of the carbonyl bond. Characterization results showed that Pt is present as Pto and Fe mainly asFe3+.  相似文献   

19.
Phenylacetylene hydrogenation on Pd, Pt and Pd–Pt/Al2O3 catalysts has been studied. In all catalysts activity was found not to depend on particle size. However, selectivity to styrene was found to depend on Pd/Al2O3 catalysts. Carbon deposition in both metal and support explains such a behavior. Nevertheless, in small Pd particles a longer residence time of styrene may control the selectivity.  相似文献   

20.
The effects of the Pd content (0–1 wt %) and the synthesis method (joint impregnation with Ni + Pd and Pd/Ni or Ni/Pd sequential impregnation) on the physicochemical and catalytic properties of Ni–Pd/CeZrO2/Al2O3 were studied in order to develop an efficient catalyst for the conversion of methane into hydrogen-containing gas. It was shown that variation in the palladium content and a change in the method used for the introduction of an active constituent into the support matrix make it possible to regulate the redox properties of nickel cations but do not affect the size of NiO particles (14.0 ± 0.5 nm) and the phase composition of the catalyst ((γ + δ)-Al2O3, CeZrO2 solid solution, and NiO). It was established that the activity of Ni–Pd catalysts in the reaction of autothermal methane reforming depends on the method of synthesis and increases in the following order: Ni + Pd < Ni/Pd < Pd/Ni. It was found that, as the Pd content of the Ni–Pd/CeZrO2/Al2O3 catalyst was decreased from 1 to 0.05 wt %, the ability for self-activation, high activity, and operational stability of the catalyst under the conditions of autothermal methane reforming remained unaffected: at 850°C, the yield of hydrogen was ~70% at a methane conversion of ~100% during a 24-h reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号