首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Poly(3,3-dimethyl oxetane) fractions ranging in number average molecular weights from 18500 to 130000 have been isothermally crystallized from the relaxed melt state in the temperature range from 12 to 44 °C, where only the monoclinic modification is formed. The influence of molecular weight and undercooling in crystallization kinetics has been analyzed. The level of crystallinity is very slightly dependent on molecular weight but the influence of this parameter on the time scale of the crystallization is relatively pronounced. The crystallization temperature coefficient was determined and it was found a constant value of the product of the interfacial energies in the range of molecular weights which has been analyzed. Growth rate measurements were carried out for fraction ¯M n=130000 and it was found that the temperature coefficients for overall and growth rates are equal. Finally, the comparison of the experimental results for this polymer with those reported for poly(oxetane) shows two main differences: first, the crystallization rate is slower for poly(3,3-dimethyl oxetane) and second, the temperature coefficient is smaller for this polymer.  相似文献   

2.
By measurement of the specific volume of solutions of poly-α-methylstyrene in α-methylstyrene monomer at 25°C, the dilatometric constant was found to be KD = (0.002007 ± 0.000030)%?1. Estimation of the temperature dependence resulted in the equation (KD)t = 1.81 × 10?3 + 7.82 + 10?6 t, where t denotes temperature in °C.  相似文献   

3.
Strain birefringence of poly(oxypropylene) was studied using several poly(oxypropylene) model networks of different crosslink densities. Most of the measurements were carried out in elongation, in both the unswollen and the swollen states, over the temperature range 10–70°C. The optical configuration parameter was found to be Δa = (4.33 ± 0.09) × 10?24 cm3 at 25°C with a very small temperature coefficient. Theoretical calculations based on rotational isomeric state theory were employed to interpret the experimental data. The results indicate the intermolecular correlations to be low for this polymer, and, contrary to other systems, the stress-optical coefficient C decreased with increasing average molecular weight between crosslinks. This fact was attributed to the end-group effect introduced by the crosslinking agent.  相似文献   

4.
Using laser interferometry, we have determined in situ the thickness increase with time of thin supported polyimide films (4–8 μm in initial thickness) immersed in n-methyl-2-pyrrolidone (NMP) as a function of NMP temperature (22–120°C). Similar experiments were also performed in dimethyl sulfoxide (DMSO) at 22°C with polyimide films of 4.1 μm in thickness. For NMP, the equilibrium fractional thickness increase (about 20%) is independent of initial polyimide thickness and temperature. The time scale for reaching equilibrium sharply decreases with temperature from 2–3 days at 22°C to 30–60 min at 120°C. Compared with NMP, the rate of DMSO sorption is considerably faster, reaching equilibrium swelling of about 28% in about 5 h at 22°C. To describe the transport process, we applied a phenomenological model proposed by Astarita and Sarti1 but reformulated in polymer fixed frame to enable straightforward comparison with the thickness data. Our analysis indicated that the transport of NMP is best described as anomalous, that is, intermediate between diffusion controlled and case II transport. The effective diffusion coefficient Deff and the front velocity U0 at 22°C were found to be 3–6 × 10?12 cm2/s and 8 × 10?9 cm/s, respectively. Our front velocity is in good accord with the value of 6 × 10?9 cm/s obtained for a similar polyimide based on gravimetric measurements.2 Both Deff and U0 show an activation energy of ~56 kJ/mol. For DMSO, however, the transport is clearly case II. The front velocity at 22°C was found to be about 6 × 10?8 cm/s, which is about four times that obtained by Rutherford back-scattering spectrometry.3  相似文献   

5.
Kinetics of the free radical polymerization of styrene at 110 °C has been investigated in the presence of C‐phenyl‐Ntert‐butylnitrone (PBN) and 2,2′‐azobis(isobutyronitrile) (AIBN) after prereaction in toluene at 85 °C. The effect of the prereaction time and the PBN/AIBN molar ratio on the in situ formation of nitroxides and alkoxyamines (at 85 °C), and ultimately on the control of the styrene polymerization at 110 °C, has been investigated. As a rule, the styrene radical polymerization is controlled, and the mechanism is one of the classical nitroxide‐mediated polymerization. Only one type of nitroxide (low‐molecular‐mass nitroxide) is formed whatever the prereaction conditions at 85 °C, and the equilibrium constant (K) between active and dormant species is 8.7 × 10?10 mol L?1 at 110 °C. At this temperature, the dissociation rate constant (kd) is 3.7 × 10?3 s?1, the recombination rate constant (kc) is 4.3 × 106 L mol?1 s?1, whereas the activation energy (Ea,diss.), for the dissociation of the alkoxyamine at the chain‐end is ~125 kJ mol?1. Importantly, the propagation rate at 110 °C, which does not change significantly with the prereaction time and the PBN/AIBN molar ratio at 85 °C, is higher than that for the thermal polymerization at 110 °C. This propagation rate directly depends on the equilibrium constant K and on the alkoxyamine and nitroxide concentrations, as well. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1219–1235, 2007  相似文献   

6.
The initiation reaction of the polymerization of α-methylstyrene by trityl tetrachloroferate and tritylhexachloroantimonate in 1,2-dichloroethane at 20°C was studied. The rate constants were 14 × 10?3 and 27 × 10?3 L mol?1s?1, respectively. The dissociation constants of tritylterachloroferate (Kd = 0.88 × 10?4M?1) and tritylhexachloroantimonate (Kd = 2.64 × 10?4M?1) was determined. The effect of electron acceptors and donors on the dissociation equilibrium and initiation rate was investigated. It was shown that in strongly dissociated ion pairs such as stable carbenium salts the electron donors and acceptors have no appreciable effect on the magnitude of the dissociation. The temperature dependence of the rate constants in the ?20–+20°C range yielded the following thermodynamic parameters for trityltetrachloroferate: Ei = 8.54 kcal/mol; A = 3.2 × 104 mol?1s?1; ΔH* = 8 kcal/mol; and S* = ?39.8 eu.  相似文献   

7.
刘佩芳  文利柏 《中国化学》1998,16(3):234-242
The mass transport and charge transfer kinetics of ozone reduction at Nafion coated Au electrodes were studied in 0.5 mol/L H2SO4 and highly resistive solutions such as distilled water and tap water. The diffusion coefficient and partition coefficient of ozone in Nafion coating are 1.78×10-6 cm2·s-1 and 2.75 at 25℃ (based on dry state thickness), respectively. The heterogeneous rate constants and Tafel slopes for ozone reduction at bare Au are 4.1×10-6 cm·s-1, 1.0×10-6 cm·s-1 and 181 mV, 207 mV in 0.5 mol/L H2SO4 and distilled water respectively and the corresponding values for Nafion coated Au are 5.5×10-6 cm·s-1, 1.1×10-6 cm·s-1 and 182 mV, 168 mV respectively. The Au microelectrode with 3 μm Nafion coating shows good linearity over the range 0-10 mmol/L ozone in distilled water with sensitivity 61 μA·ppm-1 ·cm-2, detection limit 10 ppb and 95% response time below 5 s at 25℃. The temperature coefficient in range of 11-30℃ is 1.3%.  相似文献   

8.
Measurements of the thermal expansion coefficients (TECs) of cellulose crystals in the lateral direction are reported. Oriented films of highly crystalline cellulose Iβ and IIII were prepared and then investigated with X‐ray diffraction at specific temperatures from room temperature to 250 °C during the heating process. Cellulose Iβ underwent a transition into the high‐temperature phase with the temperature increasing above 220–230 °C; cellulose IIII was transformed into cellulose Iβ when the sample was heated above 200 °C. Therefore, the TECs of Iβ and IIII below 200 °C were measured. For cellulose Iβ, the TEC of the a axis increased linearly from room temperature at αa = 4.3 × 10?5 °C?1 to 200 °C at αa = 17.0 × 10?5 °C?1, but the TEC of the b axis was constant at αb = 0.5 × 10?5 °C?1. Like cellulose Iβ, cellulose IIII also showed an anisotropic thermal expansion in the lateral direction. The TECs of the a and b axes were αa = 7.6 × 10?5 °C?1 and αb = 0.8 × 10?5 °C?1. The anisotropic thermal expansion behaviors in the lateral direction for Iβ and IIII were closely related to the intermolecular hydrogen‐bonding systems. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1095–1102, 2002  相似文献   

9.
The transport properties of separating membranes MF-4SK are studied during electrolysis of H2O in solutions of KOH. The effective diffusion coefficients of molecules of KOH and H2O and the transfer coefficients of ions K+ and OH? and molecules of H2O are measured at KOH concentrations reaching 11 M, currents reaching 0.31 A cm?2, at ambient temperature and at 80°C. In contact with a KOH solution in the concentration interval 0.1 to 11 M, the membranes that initially swelled in H2O lose a considerable fraction of water that was present in them and the overall volume of clusters and solution-filled channels in them noticeably decreases. The coefficients of transfer by current of ions K+ out of anodic compartment into cathodic and the OH? ions in the reverse direction, respectively, happen to be equal to about 0.6 and 0.4 at ambient temperature and 0.8 and 0.2 at 80°C. The coefficients of transfer of water molecules out of the anodic volume into the cathodic volume in the process of electrolysis happen to be in the limits 1.6–1.9 at ambient temperature and in the limits 2.2–2.8 at 80°C. The effective diffusion coefficients of molecules of KOH and H2O at moderate concentrations of KOH (5.6 M) amount to ~2.6 × 10?7 and 30 × 10?7 cm2s?1 at ambient temperature and ~4 × 10?7 and 61 × 10?7 cm2s?1 at 80°C, respectively. At a high concentration of KOH (~10 M) these quantities substantially diminish.  相似文献   

10.
Nickel-substituted layered perovskite PrBaCo2 ? x Ni x O5 + δ (PBCN) powders with various proportions of nickel (x?=?0, 0.1, 0.2, and 0.3, abbreviated as PBCN-0, PBCN-1, PBCN-2, and PBCN-3, respectively) are investigated as potential cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs) based on the yttria-stabilized zirconia (YSZ) electrolyte. It is found that PBCN-1 has the highest electrical conductivity of 1,397 S cm?1 at 400 °C. Substitution of Co by Ni decreases the thermal expansion coefficient (TEC) clearly. The average TEC at the temperature range of 35–900 °C decreases from 22.8?×?10?6 K?1 for PBCN-0 to 18.9?×?10?6 K?1 for PBCN-3. The polarization resistances of PBCN samples on YSZ electrolyte at 800 °C are 0.053, 0.048, 0.052, and 0.042 Ω cm2 for PBCN-0, PBCN-1, PBCN-2, and PBCN-3, respectively. The single fuel cell with the configuration of PBCN-3/YSZ/Pt delivers the highest power densities of 100, 185, 360, 495, and 660 mW cm?2 at 600, 650, 700, 750, and 800 °C, respectively.  相似文献   

11.
Highly crystalline samples of cellulose triacetate I (CTA I) were prepared from highly crystalline algal cellulose by heterogeneous acetylation. X‐ray diffraction of the prepared samples was carried out in a helium atmosphere at temperatures ranging from 20 to 250 °C. Changes in seven d‐spacings were observed with increasing temperature due to thermal expansion of the CTA I crystals. Unit cell parameters at specific temperatures were determined from these d‐spacings by the least squares method, and then thermal expansion coefficients (TECs) were calculated. The linear TECs of the a, b, and c axes were αa = 19.3 × 10?5 °C?1, αb = 0.3 × 10?5 °C?1 (T < 130 °C), αb = ?2.5 × 10?5 °C?1 (T > 130 °C), and αc = ?1.9 × 10?5 °C?1, respectively. The volume TEC was β = 15.6 × 10?5 °C?1, which is about 1.4 and 2.2 times greater than that of cellulose Iβ and cellulose IIII, respectively. This large thermal expansion could occur because no hydrogen bonding exists in CTA I. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 517–523, 2009  相似文献   

12.
Poly[3,3-bis(hydroxymethyl)oxetane], PBHMO, was prepared in high molecular weight (ηinh up to 5.2) by polymerizing the trimethylsilylether of 3,3-bis(hydroxymethyl)oxetane with the i-Bu3Al–0.7 H2O cationic catalyst at low temperature, followed by hydrolysis. PBHMO is crystalline, very high melting (314°C) and highly insoluble, much like its analog, cellulose. It is soluble in 75% H2SO4 at 30°C, being 65% converted to the acid sulfate ester; these conditions are useful for viscosity measurement, since the degradation rate is low and at least an order of magnitude less than for cellulose in this solvent. PBHMO can be prepared as oriented films and fibers using the lower melting diacetate (184°C) which can be melt or solution (CHCl3) fabricated and then the oriented forms saponified to oriented PBHMO. BHMO can be directly polymerized to low molecular weight, perhaps somewhat branched, PBHMO (ηinh 0.1) with trifluoromethanesulfonic acid catalyst at room temperature. Poly(3-methyl-3-hydroxymethyloxetane), (PMHMO), prepared in high molecular weight (ηinh up to 3.8) by the same method used for PBHMO, is more soluble and lower melting (165°C) than PBHMO, appears to be atactic and can be compression molded at 195°C to a tough, clear film which is readily oriented. Copolymers of BHMO with MHMO are crystalline over the entire composition range with a linear variation of Tm with composition, a new example of isomorphism in the polymer area.  相似文献   

13.
A novel Y‐type poly[iminocarbonyloxyethyl‐5‐methyl‐4‐{2‐thiazolylazo‐4‐(1,2,2‐tricyanovinyl)}resorcinoxyethyloxycarbonylimino‐(3,3′‐dimethoxy‐4,4′‐biphenylene)] 4 containing 5‐methyl‐4‐{5‐(1,2,2‐tricyanovinyl)‐2‐thiazolylazo}resorcinoxy groups as nonlinear optical (NLO) chromophores, which constitute part of the polymer backbone, was prepared and characterized. Polyurethane 4 is soluble in common organic solvents such as acetone and N,N‐dimethylformamide. It showed a thermal stability up to 250 °C in thermogravimetric analysis thermogram and the glass‐transition temperature (Tg) obtained from differential scanning calorimetry thermogram was around 118 °C. The second harmonic generation coefficient (d33) of poled polymer films at 1560 nm fundamental wavelength was around 8.43 × 10?9 esu. The dipole alignment exhibited a thermal stability even at 12 °C higher than Tg, and there was no SHG decay below 130 °C due to the partial main‐chain character of the polymer structure, which is acceptable for NLO device applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1166–1172, 2010  相似文献   

14.
Polymerization under the influence of boron trifluoride of 2-oxa-6-thia[3,3]spiroheptane gives two products: a linear polyether containing oxetane groups and a crosslinked polyether polysulfide. When the polymerization was carried out at ?3°C., up to 60% of soluble polysulfide is obtained. This does not prove that the thietane group polymerizes more rapidly than the oxetane group but rather that oxetane polymerization is inhibited by the presence of thietane groups. Polymerization under the influence of boron trifluoride etherate of 3,3-bis(mercaptomethyl)oxetane leads to a polyether containing free thiol groups. The degree of polymerization of the polymer, however, is low. In order to obtain higher degrees of polymerization several compounds with masked thiol groups were polymerized. 2-Oxa-6,7-dithia-6-thio[3,4]spirooctane and 2-oxa-6,8-dithia-7,7-dimethyl[3,5]-spirononane gave crosslinked products. The diacetate of 3,3-bis(mercaptomethyl)oxetane gave a linear polyether containing thiolacetate groups. Hydrolysis of this polymer leads to poly-3,3-bis(mercaptomethyl)oxetane with a softening temperature of 125–135°C.  相似文献   

15.
The desorption behavior of a surfactant in a linear low‐density polyethylene (LLDPE) blend at elevated temperatures of 50, 70, and 80 °C was studied with Fourier transform infrared spectroscopy. The composition of the LLDPE blend was 70:30 LLDPE/low‐density polyethylene. Three different specimens (II, III, and IV) were prepared with various compositions of a small molecular penetrant, sorbitan palmitate (SPAN‐40), and a migration controller, poly(ethylene acrylic acid) (EAA), in the LLDPE blend. The calculated diffusion coefficient (D) of SPAN‐40 in specimens II, III, and IV, between 50 and 80 °C, varied from 1.74 × 10?11 to 6.79 × 10?11 cm2/s, from 1.10 × 10?11 to 5.75 × 10?11 cm2/s, and from 0.58 × 10?11 to 4.75 × 10?11 cm2/s, respectively. In addition, the calculated activation energies (ED) of specimens II, III, and IV, from the plotting of ln D versus 1/T between 50 and 80 °C, were 42.9, 52.7, and 65.6 kJ/mol, respectively. These values were different from those obtained between 25 and 50 °C and were believed to have been influenced by the interference of Tinuvin (a UV stabilizer) at elevated temperatures higher than 50 °C. Although the desorption rate of SPAN‐40 increased with the temperature and decreased with the EAA content, the observed spectral behavior did not depend on the temperature and time. For all specimens stored over 50 °C, the peak at 1739 cm?1 decreased in a few days and subsequently increased with a peak shift toward 1730 cm?1. This arose from the carbonyl stretching vibration of Tinuvin, possibly because of oxidation or degradation at elevated temperatures. In addition, the incorporation of EAA into the LLDPE blend suppressed the desorption rate of SPAN‐40 and retarded the appearance of the 1730 cm?1 peak. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1114–1126, 2004  相似文献   

16.
Stress-strain-birefringence measurements were carried out on elastomeric networks of poly(oxymethylene-1,4-cis-cyclohexylenemethyleneoxysebacoyl) at several temperatures between 5 and 80°C. The dependence of both the birefringence Δn and the true stress f/A on temperature was found to be linear for T > 30°C; for T < 30°C an anomalous increase in the birefringence and a sharp decrease in the stress was observed. This behavior suggests that crystallinity is developed in the strained networks at low temperatures, and the crystallites are oriented in the direction of the elongation. Values of the optical configuration parameter Δa ranged from 9.15 to 8.28 in units of 1024 cm3 in the temperature range studied. The value at 40°C of 1024Δa, obtained from experiments performed on swollen networks, amounted to 7.47 cm3. These results suggest that intermolecular interactions enhance the birefringence of the strained networks. The quantities Δa and d In Δa/dT were calculated by using the valence optical scheme. Although the calculations reproduce the temperature coefficient fairly well, the theoretical values of Δa are smaller than the experimental ones. The agreement between theory and experiment is better assuming that the CH2CH2? COOCH2 segment is freely rotating.  相似文献   

17.
The quasi‐living cationic copolymerization of 3,3‐bis(chloromethyl)oxetane (BCMO) and ε‐caprolactone (ε‐CL), using boron trifluoride etherate as catalyst and 1,4‐butanediol as coinitiator, was investigated in methylene chloride at 0°C. The resulting hydroxyl‐ended copolymers exhibit a narrow molecular weight polydispersity and a functionality of about 2. The reactivity ratios of BCMO (0.26) and ε‐CL (0.47), and the Tg of the copolymers, indicate their statistical character. The synthesis of poly(3,3‐bis(azidomethyl)oxetane‐co‐ε‐caprolactone) from poly(BCMO‐co‐ε‐CL) via the substitution of the chlorine atoms by azide groups, using sodium azide in DMSO at 110°C, occurs without any degradation, but the copolymers decompose at about 240°C. All polymers were characterized by vapor pressure osmometry or steric exclusion chromatography, 1H‐NMR and FTIR spectroscopies, and DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1027–1039, 1999  相似文献   

18.
Complexes of boron trichloride, boron tribromide, and ethylaluminumdichloride with various acetates were directly observed by 1H-NMR. Complexes of secondary and tertiary acetates which model macromolecular active species in polymerization of styrene and isobutene are stable at ?75°C, but decompose at temperatures above ?30°C to yield corresponding chlorides or bromides. The stability of complexes depends on the Lewis acid, the alkyl group in the ester, and the structure of acetate. Rates of the bimolecular exchange of complexes with excess acetate were calculated from dynamic NMR to be kex = 2 × 101 L mol?1 s?1 (?65°C) and kex = 5 × 104 L mol?1 s?1 (?75°C) for 1-phenylethyl acetate with BCl3 and EtAlCl2, respectively.  相似文献   

19.
The redox system of potassium persulfate–thiomalic acid (I1–I2) was used to initiate the polymerization of acrylamide (M) in aqueous medium. For 20–30% conversion the rate equation is where Rp is the rate of polymerization. Activation energy is 8.34 kcal deg?1 mole?1 in the investigated range of temperature 25–45°C. Mn is directly proportional to [M] and inversely to [I1]. The range of concentrations for which these observations hold at 35°C and pH 4.2 are [I1] = (1.0–3.0) × 10?3, [I2] = (3.0–7.5) × 10?3, and [M] = 5.0 × 10?2–3.0 × 10?1 mole/liter.  相似文献   

20.
Two samples of cellulose (molecular weight 2.97 × 105 and 1.25 × 105) were transformed into carbanilates (CTC) which were then fractionated by the elution method at a constant composition of the acetone-water elution mixture with the column temperature gradually increasing from ?30°C to 30°C, and by the GPC method in acetone and tetrahydrofuran. Tetrahydrofuran appeared to be a more suitable solvent. The molecular weights of fractions obtained by the elution fractionation were determined by the light-scattering method in tetrahydrofuran. The width of fractions was determined by the GPC method (average M w/M n = 1.37); the [η] values and the Mark-Houwink constants (K = 5.3 × 10-3, a = 0.84) for tetrahydrofuran at 25°C were determined. The calibration curve for the GP method was constructed by means of the fractions thus obtained; it was demonstrated that the universal calibration curve according to Benoit can also be used. It was demonstrated that the molecular weight distribution of cellulose can be conveniently determined by conversion into CTC followed either by the elution fractionation (for preparative purposes) or by fractionation by the GPC method (for analytical purposes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号