首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A synergistic catalytic method combining photoredox catalysis, hydrogen‐atom transfer, and proton‐reduction catalysis for the dehydrogenative silylation of alkenes was developed. With this approach, a highly concise route to substituted allylsilanes has been achieved under very mild reaction conditions without using oxidants. This transformation features good to excellent yields, operational simplicity, and high atom economy. Based on control experiments, a possible reaction mechanism is proposed.  相似文献   

2.
Quaternary stereocenters are found in numerous bioactive molecules. The Tsuji–Trost reaction has proven to be a powerful C?C bond forming process, and, at least in principle, should be well suited to access quaternary stereocenters via the α‐allylation of ketones. However, while indirect approaches are known, the direct, catalytic asymmetric α‐allylation of branched ketones has been elusive until today. By combining “enol catalysis” with the use of CO2 as a formal catalyst for asymmetric catalysis, we have now developed a solution to this problem: we report a direct, highly enantioselective and highly atom‐economic Tsuji–Trost allylation of branched ketones with allylic alcohol. Our reaction delivers products bearing quaternary stereocenters with high enantioselectivity and water as the sole by‐product. We expect our methodology to be of utility in asymmetric catalysis and inspire the design of other highly atom‐economic transformations.  相似文献   

3.
Cross‐coupling reactions between propargylic alcohols and isocyanides, by means of silver catalysis, have been described. This new reaction is both atom and step efficient and is applicable to a broad scope of substrates, allowing the synthesis of a range of synthetically valuable 2,3‐allenamides in moderate to excellent yields.  相似文献   

4.
Atomic sp, sp2, and sp3 hybrid orbitals were introduced by Linus Pauling to explain the nature of the chemical bond. Quantum dynamics simulations show that they can be sculpted by means of a selective series of coherent laser pulses, starting from the 1s orbital of the hydrogen atom. Laser hybridization generates atoms with state‐selective electric dipoles, opening up new possibilities for the study of chemical reaction dynamics and heterogeneous catalysis.  相似文献   

5.
Gold catalysis enables direct construction of tetracyclic fused indolines through the migration of a propargyl substituent from an aniline nitrogen atom to the C3‐position of an indole from 2‐alkynyl‐N‐propargylanilines. This reaction provides rapid access to fused three‐dimensional indolines in a single operation with the formation of four bonds and three rings.  相似文献   

6.
Active methylene compounds are a major class of reaction partners for C? C bond formation with sp2 C? X (X=halide) fragments. As one of the most‐classical versions of the Ullmann‐type coupling reaction, activated‐methylene‐based C? C coupling reactions have been efficiently employed in a large number of syntheses. Although this type of reaction has long relied on noble‐metal catalysis, the renaissance of copper catalysis at the end of last century has led to dramatic developments in Ullmann C? C coupling reactions. Owing to its low cost, abundance, as well as excellent catalytic activity, the exceptional atom economy of copper catalysis is gaining widespread attention in various organic synthesis. This review summarizes the advances in copper‐catalyzed intermolecular and intramolecular C? C coupling reactions that use activated methylene species as well as in tandem reactions that are initiated by this transformation.  相似文献   

7.
A completely atom economical palladium‐catalyzed addition reaction has been developed to stereoselectively access functionalized tetrasubstituted alkenyl iodides. The palladium catalyst, which bears an electron‐poor bidentate ligand rarely employed in catalysis, is essential to promote the high yielding and chemoselective intermolecular reaction between equimolar amounts of an alkyne and an aryl iodide. This new carbohalogenation reaction is an attractive alternative to traditional synthetic methods, which rely on multistep synthetic sequences and protecting‐group manipulations.  相似文献   

8.
The enantioselective synthesis of pyrazolone‐fused spirocyclohexadienones was demonstrated by the reaction of α,β‐unsaturated aldehydes with α‐arylidene pyrazolinones under oxidative N‐heterocyclic carbene (NHC)catalysis. This atom‐economic and formal [3+3] annulation reaction proceeds through a vinylogous Michael addition/spiroannulation/dehydrogenation cascade to afford spirocyclic compounds with an all‐carbon quaternary stereocenter in moderate to good yields and excellent ee values. Key to the success of the reaction is the cooperative NHC‐catalyzed generation of chiral α,β‐unsaturated acyl azoliums from enals, and base‐mediated tandem generation of dienolate/enolate intermediates from pyrazolinones.  相似文献   

9.
The aldol reaction represents an important class of atom‐economic carbon–carbon bond‐forming reactions vital to modern organic synthesis. Despite the attention this reaction has received, issues related to chemo‐ and regioselectivity as well as reactivity of readily enolizable electrophiles remain. To help overcome these limitations, a new direct approach toward aldol products that does not rely upon carbonyl substrates is described. This approach employs room‐temperature contemporaneous lanthanum/vanadium dual catalysis, whereby a vanadium‐catalyzed 1,3‐transposition of allenols is coupled with a lanthanum‐catalyzed Meinwald rearrangement of epoxides in situ to directly form aldol products.  相似文献   

10.
Combining the advantages of homogeneous and heterogeneous catalysts, single‐atom catalysts (SACs) are bringing new opportunities to revolutionize ORR catalysis in terms of cost, activity and durability. However, the lack of high‐performance SACs as well as the fundamental understanding of their unique catalytic mechanisms call for serious advances in this field. Herein, for the first time, we develop an Ir‐N‐C single‐atom catalyst (Ir‐SAC) which mimics homogeneous iridium porphyrins for high‐efficiency ORR catalysis. In accordance with theoretical predictions, the as‐developed Ir‐SAC exhibits orders of magnitude higher ORR activity than iridium nanoparticles with a record‐high turnover frequency (TOF) of 24.3 e? site?1 s?1 at 0.85 V vs. RHE) and an impressive mass activity of 12.2 A mg?1Ir, which far outperforms the previously reported SACs and commercial Pt/C. Atomic structural characterizations and density functional theory calculations reveal that the high activity of Ir‐SAC is attributed to the moderate adsorption energy of reaction intermediates on the mononuclear iridium ion coordinated with four nitrogen atom sites.  相似文献   

11.
The potential of merging photoredox and nickel catalysis to perform multicomponent alkene difunctionalizations under visible‐light irradiation is demonstrated here. Secondary and tertiary alkyl groups, as well as sulfonyl moieties can be added to the terminal position of the double bond with simultaneous arylation of the internal carbon atom in a single step under mild reaction conditions. The process, devoid of stoichiometric additives, benefits from the use of bench‐stable and easy‐to‐handle reagents, is operationally simple, and tolerates a wide variety of functional groups.  相似文献   

12.
Under mild dual photoredox/copper catalysis, the reaction of N‐alkoxypyridinium salts with readily available silyl reagents (TMSN3, TMSCN, TMSNCS) afforded δ‐azido, δ‐cyano, and δ‐thiocyanato alcohols in high yields. The reaction went through a domino process involving alkoxy radical generation, 1,5‐hydrogen atom transfer (1,5‐HAT) and copper‐catalyzed functionalization of the resulting C‐centered radical. Conditions for catalytic enantioselective δ‐C(sp3)?H cyanation were also documented.  相似文献   

13.
An extensive experimental study of the mechanism of gold(I)‐catalyzed hydroalkoxylation of internal alkynes has been conducted by using NMR spectroscopy. This study was focused on the organogold intermediates, observations of actual catalytic intermediates in situ, and the reaction kinetics that are involved in this reaction. Based on the experimental results, a complete mechanistic picture was established, including on‐ and off‐cycle processes that explain the role of diaurated species. We have shown that gold‐catalyzed hydroalkoxylation of internal alkynes is a reaction that requires only one gold atom for the catalytic cycle, disproving a recent hypothesis regarding the involvement of cooperative gold catalysis.  相似文献   

14.
Phosphines are important ligands in homogenous catalysis and have been crucial for many advances, such as in cross‐coupling, hydrofunctionalization, or hydrogenation reactions. Herein we report the synthesis and application of a novel class of phosphines bearing ylide substituents. These phosphines are easily accessible via different synthetic routes from commercially available starting materials. Owing to the extra donation from the ylide group to the phosphorus center the ligands are unusually electron‐rich and can thus function as strong electron donors. The donor capacity surpasses that of commonly used phosphines and carbenes and can easily be tuned by changing the substitution pattern at the ylidic carbon atom. The huge potential of ylide‐functionalized phosphines in catalysis is demonstrated by their use in gold catalysis. Excellent performance at low catalyst loadings under mild reaction conditions is thus seen in different types of transformations.  相似文献   

15.
Fluorinated organoboranes serve as versatile synthetic precursors for the preparation of value‐added fluorinated organic compounds. Recent progress has been mainly focused on the transition‐metal catalyzed defluoroborylation. Herein, we report a photocatalytic defluoroborylation platform through direct B?H activation of N‐heterocyclic carbene boranes, through the synergistic merger of a photoredox catalyst and a hydrogen atom transfer catalyst. This atom‐economic and operationally simple protocol has enabled defluoroborylation of an extremely broad scope of multifluorinated substrates including polyfluoroarenes, gem‐difluoroalkenes, and trifluoromethylalkenes in a highly selective fashion. Intriguingly, the defluoroborylation protocol can be transition‐metal free, and the regioselectivity obtained is complementary to the reported transition‐metal‐catalysis in many cases.  相似文献   

16.
Single‐atom catalysts have drawn great attention, especially in electrocatalysis. However, most of previous works focus on the enhanced catalytic properties via improving metal loading. Engineering morphologies of catalysts to facilitate mass transport through catalyst layers, thus increasing the utilization of each active site, is regarded as an appealing way for enhanced performance. Herein, we design an overhang‐eave structure decorated with isolated single‐atom iron sites via a silica‐mediated MOF‐templated approach for oxygen reduction reaction (ORR) catalysis. This catalyst demonstrates superior ORR performance in both alkaline and acidic electrolytes, comparable to the state‐of‐the‐art Pt/C catalyst and superior to most precious‐metal‐free catalysts reported to date. This activity originates from its edge‐rich structure, having more three‐phase boundaries with enhanced mass transport of reactants to accessible single‐atom iron sites (increasing the utilization of active sites), which verifies the practicability of such a synthetic approach.  相似文献   

17.
Conventional direct C?H selenylation suffers from simple selenation with limited atom economy and complicated reaction system. In this work, we designed benzoselenazolone as a novel bifunctional selenide reagent for both off‐ and on‐DNA C?H selenylation under rhodium(III) catalysis. We show that using benzoselenazolone allowed production of a series of selenylation products containing an adjacent aminoacyl group in a fast and efficient way, with high atom economy. The synthetic application of this method was demonstrated by taking advantage of the amide functionality as a nucleophile, directing group, and amide coupling partner. This work shows great potential in facilitating rapid construction of selenium‐containing DNA‐encoded chemical libraries (SeDELs), and lays the foundation for the development of selenium‐containing drugs.  相似文献   

18.
An enantioselective Michael addition– four‐atom ring expansion cascade reaction involving cyclobutanones activated by a N‐aryl secondary amide group and ortho‐amino nitrostyrenes has been developed for the preparation of functionalized eight‐membered benzolactams using bifunctional aminocatalysts. Taking advantage of the secondary amide activating group, the eight‐membered cyclic products could be further rearranged into their six‐membered isomers having a glutarimide core under base catalysis conditions without erosion of optical purity, featuring an overall ring expansion– ring contraction strategy.  相似文献   

19.
Aldehydes are among the most versatile functional groups for synthetic chemistry. However, access to polysubstituted alkyl aldehydes is very limited and requires lengthy synthetic routes that involve multiple‐step functional‐group conversion. This paper reports a one‐step synthesis of polysubstituted aldehydes from readily available olefin substrates using visible‐light photoredox catalysis. Despite a number of competing reaction pathways, commercial styrenes react with vinyl ethers selectively in the presence of an acridinium salt photooxidant and a disulfide hydrogen‐atom‐transfer catalyst under blue LED irradiation. Alkyl aldehydes with different substitution patterns are prepared in good yields. This strategy can be applied to structurally sophisticated substrates.  相似文献   

20.
Single‐atom catalysts (SACs), as homogeneous catalysts, have been widely explored for chemical catalysis. However, few studies focus on the applications of SACs in enzymatic catalysis. Herein, we report that a zinc‐based zeolitic‐imidazolate‐framework (ZIF‐8)‐derived carbon nanomaterial containing atomically dispersed zinc atoms can serve as a highly efficient single‐atom peroxidase mimic. To reveal its structure–activity relationship, the structural evolution of the single‐atom nanozyme (SAzyme) was systematically investigated. Furthermore, the coordinatively unsaturated active zinc sites and catalytic mechanism of the SAzyme are disclosed using density functional theory (DFT) calculations. The SAzyme, with high therapeutic effect and biosafety, shows great promises for wound antibacterial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号