首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
样品前处理技术在气相色谱分析中的应用进展   总被引:1,自引:0,他引:1  
气相色谱法是当前应用最广泛的分析技术之一。使用气相色谱对复杂基体进行分析时的样品前处理步骤往往繁琐耗时,易引起误差,已成为制约分析效率和准确度提升的关键环节。本文综述了2009-2013年几种主要的样品前处理技术,包括吹扫捕集、固相萃取、固相微萃取、液相微萃取技术以及微波辅助萃取、超声波辅助萃取等场辅助萃取技术在气相色谱分析中的应用研究进展。  相似文献   

2.
Ultra high performance liquid chromatography and supercritical fluid chromatography techniques are favored because of their high efficiency and fast analysis speed. Although many sample preparation techniques have been coupled with common liquid chromatography online, the online coupling of sample preparation with the two popular chromatography techniques have gained increasing attention owing to the increasing requirements of efficiency and sensitivity. In this review, we have discussed and summarized the recent advances of the online coupling of sample preparation with ultra high performance liquid chromatography and supercritical fluid chromatography techniques. The main sample preparation techniques that have been coupled with ultra high performance liquid chromatography online are solid‐phase extraction and in‐tube solid‐phase microextraction, while solid‐phase extraction and supercritical fluid extraction are the main techniques that have been coupled with supercritical fluid chromatography online. Especially, the strategies for online coupling of sample preparation with chromatography techniques were summarized. Typical applications and growing trends of the online coupling techniques were also discussed in detail. With the increasing demands of improving the efficiency, throughput, and analytical capability toward complex samples of the analysis methods, online coupling of sample preparation with chromatography techniques will acquire further development.  相似文献   

3.
Large volume injection (LVI) is a prerequisite of modern gas chromatographic (GC) analysis, especially when trace sample components have to be determined at very low concentration levels. Injection of larger than usual sample volumes increases sensitivity and/or reduces (or even eliminates) the need for extract concentration steps. Also, an LVI technique can serve as an interface for on-line connection of GC with a sample preparation step or with liquid chromatography. This article reviews the currently available LVI techniques, including basic approaches to their optimization and important real-world applications. The most common LVI methods are on-column and programmed temperature vaporization (PTV) in solvent split mode. Newer techniques discussed in this article include direct sample introduction (DSI), splitless overflow, at-column, and "through oven transfer adsorption desorption" (TOTAD).  相似文献   

4.
The sample preparation step has been identified as the bottleneck of analytical methodology in chemical analysis. Therefore, there is need for the development of cost‐effective, easy to operate, and environmentally friendly miniaturized sample preparation technique. The microextraction techniques combine extraction, isolation, concentration, and introduction of analytes into analytical instrument, to a single and uninterrupted step, and improve sample throughput. The use of liquid‐phase microextraction techniques for the analysis of pesticide residues in fruits and vegetables are discussed with the focus on the methodologies employed by different researchers and their analytical performances. Analytes are extracted using water‐immiscible solvents and are desorbed into gas chromatography, liquid chromatography, or capillary electrophoresis for identification and quantitation.  相似文献   

5.
食品中农药残留分析的样品前处理技术进展*   总被引:38,自引:0,他引:38  
易军  李云春  弓振斌 《化学进展》2002,14(6):415-424
本文综述了近年来食品中农药残留分析的样品前处理技术,重点对超临界流体萃取法在食品农药残留分析中的应用及其联用技术进行了评述;同时对固相微萃取、微波辅助萃取和凝胶渗透色谱法进行了总结。对食物中农药残留分析技术的发展方向进行了讨论。  相似文献   

6.
In this review, we consider and discuss the affinity and complementarity between a generic sample preparation technique and the comprehensive two‐dimensional gas chromatography process. From the initial technical development focus (e.g., on the GC×GC and solid‐phase microextraction techniques), the trend is inevitably shifting toward more applied challenges, and therefore, the preparation of the sample should be carefully considered in any GC×GC separation for an overreaching research. We highlight recent biomedical, food, and plant applications (2016–July 2020), and specifically those in which the combination of tailored sample preparation methods and GC×GC–MS has proven to be beneficial in the challenging aspects of non‐targeted analysis. Specifically on the sample preparation, we report on gas‐phase, solid‐phase, and liquid‐phase extractions, and derivatization procedures that have been used to extract and prepare volatile and semi‐volatile metabolites for the successive GC×GC analysis. Moreover, we also present a milestone section reporting the early works that pioneered the combination of sample preparation techniques with GC×GC for non‐targeted analysis.  相似文献   

7.
The state-of-the-art of gas chromatography coupled with inductively coupled plasma mass spectrometry (GC-ICP MS) is comprehensively reviewed. Particular attention is given to the recent advances in ICP MS detection including: GC-ICP interface designs; low power plasmas; and alternative mass analyzers (time-of-flight, double-focussing single collector, double-focussing and collision cell single-focussing multicollectors). On the level of sample preparation for speciation analysis by GC-ICP MS, new derivatization reagents and advances in extraction techniques, such as capillary purge-and-trap, solid phase microextraction and stirbar solid phase extraction are discussed. The increasing role of organometallic species labeled with stable isotopes for the detection of sources of errors during sample preparation and for isotope dilution quantification is highlighted. Applications of GC-ICP MS to the analysis of real-world samples are summarized with a focus on the areas which particularly benefit from the high ICP MS detection sensitivity and tolerance to sample matrix.  相似文献   

8.
Pesticides, widely applied in agriculture, can produce a variety of transformation products and their continuous use causes deleterious effects to ecosystem. Efficient and sensitive analytical techniques for enrichment and analysis of pesticides samples are highly required. Compared with other extraction methods, solid‐phase micro extraction is a solvent free, cost effective, robust, versatile, and high throughput sample preparation technique, especially for the analysis of pesticides from complicated matrices. Coupling of solid‐phase micro extraction with gas chromatography and mass spectrometry and liquid chromatography–mass spectrometry has been extensively applied in pesticide analysis. On the other hand, in recent years, combination of fast separation using solid‐phase micro extraction and rapid detection using ambient mass spectrometry is providing highly efficient pesticide screening. This article summarizes the applications of solid‐phase micro extraction coupled to mass spectrometry for pesticides analysis.  相似文献   

9.
Extraction methods applied in analysis of water samples can be named as liquid chromatography. Very often, these techniques are used as sample preparation method before another analytical method such gas chromatography or high performance liquid chromatography. The subject of this review is to compare the extraction techniques of liquid samples and discuss their characteristics in comparison with liquid chromatography. Some new extraction techniques are described, and some characteristic parameters are compared.  相似文献   

10.
In the present work, a review of the analytical methods developed in the last 15 years for the determination of endocrine disrupting chemicals (EDCs) in human samples related with children, including placenta, cord blood, amniotic fluid, maternal blood, maternal urine and breast milk, is proposed. Children are highly vulnerable to toxic chemicals in the environment. Among these environmental contaminants to which children are at risk of exposure are EDCs —substances able to alter the normal hormone function of wildlife and humans—. The work focuses mainly on sample preparation and instrumental techniques used for the detection and quantification of the analytes. The sample preparation techniques include, not only liquid–liquid extraction (LLE) and solid-phase extraction (SPE), but also modern microextraction techniques such as extraction with molecular imprinted polymers (MIPs), stir-bar sorptive extraction (SBSE), hollow-fiber liquid-phase microextraction (HF-LPME), dispersive liquid–liquid microextraction (DLLME), matrix solid phase dispersion (MSPD) or ultrasound-assisted extraction (UAE), which are becoming alternatives in the analysis of human samples. Most studies focus on minimizing the number of steps and using the lowest solvent amounts in the sample treatment. The usual instrumental techniques employed include liquid chromatography (LC), gas chromatography (GC) mainly coupled to tandem mass spectrometry. Multiresidue methods are being developed for the determination of several families of EDCs with one extraction step and limited sample preparation.  相似文献   

11.
The use of (multi-)immunoaffinity chromatography in residue analysis is discussed. After an introduction to the immunochemical background an overview of applications is given. A distinction is made between the following methods: (1) single-antibody, single-analyte procedures; (2) single-antibody, multi-analyte procedures; (3) multi-antibody, multi-analyte procedures. It is concluded that immunoaffinity chromatography is superior to most other techniques for sample preparation and extract clean-up. Its advantages in multi-residue procedures are most clear when compared with e.g. high-performance liquid chromatography. In combination with gas chromatography-low-resolution mass spectrometry, very effective multi-residue methods are possible. Most frequently they concern screening procedures which can fulfill the identification criteria for reference methods. It is concluded that the use of (multi-)immunoaffinity chromatography will proliferate further in the 1990s. However, its future viability is highly dependent on the interest of commercial firms and on the involvement of the EC Community Bureau of Reference in manufacturing and supplying the necessary materials.  相似文献   

12.
Applications of solid-phase microextraction in food analysis   总被引:21,自引:0,他引:21  
Food analysis is important for the evaluation of the nutritional value and quality of fresh and processed products, and for monitoring food additives and other toxic contaminants. Sample preparation, such as extraction, concentration and isolation of analytes, greatly influences the reliable and accurate analysis of food. Solid-phase microextraction (SPME) is a new sample preparation technique using a fused-silica fiber that is coated on the outside with an appropriate stationary phase. Analyte in the sample is directly extracted to the fiber coating. The SPME technique can be used routinely in combination with gas chromatography (GC), GC–mass spectrometry (GC–MS), high-performance liquid chromatography (HPLC) or LC–MS. Furthermore, another SPME technique known as in-tube SPME has also been developed for combination with LC or LC–MS using an open tubular fused-silica capillary column as an SPME device instead of SPME fiber. These methods using SPME techniques save preparation time, solvent purchase and disposal costs, and can improve the detection limits. This review summarizes the SPME techniques for coupling with various analytical instruments and the applications of these techniques to food analysis.  相似文献   

13.
The use of enzymes coupled with supercritical fluid (SF)-based analytical techniques, such as supercritical fluid extraction (SFE), provides a safer environment platform for the analytical chemist and reduces the use of organic solvents. Incorporation of such techniques not only reduces the use of solvent in analytical laboratories, but it can also lead to overall method simplification and time savings. In this review, some of the fundamental aspects of using enzymes in the presence of SF media are discussed, particularly the influence of extraction (reaction) pressure, temperature, and water content of the extracting fluid and/or the sample matrix. Screening of optimal conditions for conducting reactions in the presence of SF media can be readily accomplished with automated serial or parallel SFE instrumentation, including selection of the proper enzyme. Numerous examples are cited, many based on lipase-initiated conversions of lipid substrates, to form useful analytical derivatives for gas chromatography, liquid chromatography, or SF chromatography analysis. In certain cases, enzymatic-aided processing of samples can permit the coupling of the extraction, sample preparation, and final analysis steps. The derived methods/techniques find application in nutritional food analyses, assays of industrial products, and micro analyses of specific samples.  相似文献   

14.
An integrated gas chromatography/Fourier transform infrared spectrometry (GC/FT-IR) system developed for the analysis of environmental pollutants is described. The versatility of the system allows the utilization of many different techniques of sample introduction and manipulation during analysis. The sample can be introduced by direct injection or thermal desorption from an adsorbent cartridge, and can then be separated on one of two capillary columns and detected by FT-IR or an FID. Cold traps and collection cartridges incorporated in the system permit recovery and additional fractionation of samples. Recovered sample and sample fractions can then be re-analyzed by GC/FT-IR or subsequently analyzed by GC/MS or other methods.  相似文献   

15.
Trace analysis of pesticides by gas chromatography.   总被引:9,自引:0,他引:9  
The analysis of pesticides is relevant to both food quality and the environment. Many laboratories are occupied with the analysis of pesticides in food, water or soil. Capillary gas chromatography is the technique most widely used in pesticide analysis. In present laboratory practice it serves as a screening method for over 300 pesticides. In this review we describe the role of gas chromatography as an analytical tool in combination with currently used or recently developed sample preparation techniques.  相似文献   

16.
《Analytical letters》2012,45(7):1463-1474
Abstract

Current methods for the analysis of explosives in soils utilize time consuming sample preparation workups and extractions. The method detection limits for EPA Method 8330 for most analytes is substantially higher than the typical explosive concentrations encountered in soils near unexploded ordnance items, landmines, or other hidden explosive devices. It is desirable to develop new analytical techniques to analyze soil with low concentrations of explosives to support the development of explosive sensors. This report describes efforts to adapt headspace solid phase extraction and gas chromatography/mass spectrometry to provide a convenient and sensitive analysis method for explosives in soil.  相似文献   

17.
《Analytical letters》2012,45(7):1437-1444
Abstract

We report the use of solid phase microextraction (SPME) combined with ion mobility spectrometry (IMS) for sampling, screening and identification of organic compounds that are readily detected by IMS. This is a new SPME application. SPME has emerged recently as an excellent sample preparation technique for gas chromatography (GC) and high performance liquid chromatography (HPLC). We have found that SPME can be used very conveniently with IMS. An example of SPME-IMS is described using SPME headspace sampling at room temperature with 0.1 mL vials containing 1.0 microgram or less of either cocaine freebase or cocaine hydrochloride. This is followed by analysis using IMS. A hole, drilled in the IMS sample ticket holder, serves as the SPME-IMS interface.

  相似文献   

18.
《Electrophoresis》2017,38(24):3059-3078
In the field of analytical chemistry, sample preparation and chromatographic separation are two core procedures. The means by which to improve the sensitivity, selectivity and detection limit of a method have become a topic of great interest. Recently, porous organic frameworks, such as metal‐organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in this research area because of their special features, and different methods have been developed. This review summarizes the applications of MOFs and COFs in sample preparation and chromatographic stationary phases. The MOF‐ or COF‐based solid‐phase extraction (SPE), solid‐phase microextraction (SPME), gas chromatography (GC), high‐performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) methods are described. The excellent properties of MOFs and COFs have resulted in intense interest in exploring their performance and mechanisms for sample preparation and chromatographic separation.  相似文献   

19.
样品前处理-色谱分析在线联用技术的研究进展   总被引:8,自引:0,他引:8  
钟启升  胡玉斐  李攻科  胡玉玲 《色谱》2009,27(5):690-699
样品前处理是色谱分析中耗时最多、最容易引起误差的关键环节,因此有关样品前处理技术与色谱分析的在线联用的研究已成为分析化学的前沿课题。本文综述了近年来各种样品前处理技术与色谱分析在线联用的研究进展,包括固相萃取、固相微萃取与液相微萃取、膜辅助萃取、场作用辅助萃取、气相萃取、热解吸以及微芯片分离技术。  相似文献   

20.
传统的离子色谱主要应用于水溶液中的阴、阳离子和极性化合物。随着离子色谱应用范围的扩大,通过合适的样品制备,将非水溶液的样品转化为水溶液,包括有机溶剂、固体样品和气态样品,特别是随着我们对大气环境、气体纯度以及呼出气体中气态样品的组成等方面的重视,越来越多的气体和气态样品,特别是离子态和极性化合物,可通过合适的样品制备、采集转化为水溶液,通过离子色谱技术进行分析。综述了气体组分的离子色谱检测技术,总结了气体样品、气溶胶以及液态样品中气体物质的制备和采集方法,运用离子色谱技术对上述样品进行测定,并对该技术运用过程中存在的问题及发展前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号