首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Isocyanides are versatile building blocks, and have been extensively exploited in C? H functionalization reactions. However, transition‐metal‐catalyzed direct C? H functionalization reactions with isocyanides suffer from over‐insertion of isocyanides. Reported herein is a radical coupling/isomerization strategy for the cross‐coupling of isocyanides with active methylene compounds through silver‐catalysis. The method solves the over‐insertion issue and affords a variety of otherwise difficult to synthesize β‐aminoenones and tricarbonylmethanes under base‐ and ligand‐free conditions. This report presents a new fundamental C? C bond‐forming reaction of two basic chemicals.  相似文献   

2.
Azulene, acenaphthylene and fulvene derivatives exhibit important physical properties useful in materials chemistry as well as valuable biological properties. Since about two decades ago, the metal‐catalyzed functionalization of such compounds, via C?H bond activation of their 5‐membered carbocyclic ring, proved to be a very convenient method for the synthesis of a wide variety of azulene, acenaphthylene and fulvene derivatives. For such reactions, there is no need to prefunctionalize the 5‐membered carbocyclic rings. In this review, the progress in the synthesis of azulene, acenaphthylene and fulvene derivatives via metal‐catalyzed C?H bond activation of their 5‐membered carbocyclic ring are summarized.  相似文献   

3.
Transition‐metal‐catalyzed C–H bond functionalization has become one of the most promising strategies to prepare complex molecules from simple precursors. However, the utilization of environmentally unfriendly oxidants in the oxidative C–H bond functionalization reactions reduces their potential applications in organic synthesis. This account describes our recent efforts in the development of a redox‐neutral C–H bond functionalization strategy for direct addition of inert C–H bonds to unsaturated double bonds and a redox‐green C–H bond functionalization strategy for realization of oxidative C–H functionalization with O2 as the sole oxidant, aiming to circumvent the problems posed by utilizing environmentally unfriendly oxidants. In principle, these redox‐neutral and redox‐green strategies pave the way for establishing new environmentally benign transition‐metal‐catalyzed C–H bond functionalization strategies.  相似文献   

4.
Nitrogen‐containing heterocycles have found remarkable applications in natural product research, material sciences, and pharmaceuticals. Although the synthesis of this interesting class of compounds attracted the interest of generations of organic chemists, simple and straightforward assembly methods based on transition‐metal catalysis have regularly been elusive. The recent advancements in the development of C?H functionalization have helped in accomplishing the synthesis of a variety of complex heterocycles from simple precursors. This Focus Review summarizes the recent advances in one particular field: the copper‐catalyzed C?N bond formation reactions via C?H bond functionalization to furnish a comprehensive range of nitrogen heterocycles. Applicability and synthetic feasibility of a particular reaction represent major requirements for the inclusion in this review.  相似文献   

5.
In this Review, we summarize the current state of the art in late‐transition‐metal‐catalyzed reactions of acyl fluorides, covering both their synthesis and further transformations. In organic reactions, the relationship between stability and reactivity of the starting substrates is usually characterized by a trade‐off. Yet, acyl fluorides display a very good balance between these properties, which is mostly due to their moderate electrophilicity. Thus, acyl fluorides (RCOF) can be used as versatile building blocks in transition‐metal‐catalyzed reactions, for example, as an “RCO” source in acyl coupling reactions, as an “R” source in decarbonylative coupling reactions, and as an “F” source in fluorination reactions. Starting from the cleavage of the acyl C?F bond in acyl fluorides, various transformations are accessible, including C?C, C?H, C?B, and C?F bond‐forming reactions that are catalyzed by transition‐metal catalysts that contain the Group 9–11 metals Co, Rh, Ir, Ni, Pd, or Cu.  相似文献   

6.
In recent years, transition‐metal‐catalyzed C?H activation has become a key strategy in the field of organic synthesis. Rhodium complexes are widely used as catalysts in a variety of C?H functionalization reactions because of their high reactivity and selectivity. The availability of a number of rhodium complexes in various oxidation states enables diverse reaction patterns to be obtained. Regioselectivity, an important issue in C?H activation chemistry, can be accomplished by using a directing group to assist the reaction. However, to obtain the target functionalized compounds, it is also necessary to use a directing group that can be easily removed. A wide range of directed C?H functionalization reactions catalyzed by rhodium complexes have been reported to date. In this Review, we discuss Rh‐catalyzed C?H functionalization reactions that are aided by the use of a removable directing group such as phenol, amine, aldehyde, ketones, ester, acid, sulfonic acid, and N‐heteroaromatic derivatives.  相似文献   

7.
A novel, efficient, and practical method for the synthesis of imidazopyridine derivatives has been developed through the copper‐catalyzed aerobic oxidative C? H functionalization of substituted pyridines with N‐(alkylidene)‐4H‐1,2,4‐triazol‐4‐amines. The procedure occurs by cleavage of the N? N bond in the N‐(alkylidene)‐4H‐1,2,4‐triazol‐4‐amines and activation of an aryl C? H bond in the substituted pyridines. This is the first example of the preparation of imidazopyridine derivatives by using pyridines as the substrates by transition‐metal‐catalyzed C? H functionalization. This method should provide a novel and efficient strategy for the synthesis of other nitrogen heterocycles.  相似文献   

8.
The pairing of transition metal catalysis with the reagent Selectfluor (F‐TEDA–BF4) has attracted considerable attention due to its utility in myriad C?C and C?heteroatom bond‐forming reactions. However, little mechanistic information is available for Selectfluor‐mediated transition metal‐catalyzed reactions and controversy surrounds the precise role of Selectfluor in these processes. We present herein a systematic investigation of homogeneous Au‐catalyzed oxidative C?O bond‐forming reactions using density functional theory calculations. Currently, Selectfluor is thought to serve as an external oxidant in AuI/AuIII catalysis. However, our investigations suggest that these reactions follow a newly proposed mechanism in which Selectfluor functions as an electrophilic fluorinating reagent involved in a fluorination/defluorination cycle. We have also explored Selectfluor‐mediated gold‐catalyzed homocoupling reactions, which, when cyclopropyl propargylbenzoate is used as a substrate, lead to an unexpected byproduct.  相似文献   

9.
Metal carbenes derived from transition metal‐catalyzed decomposition of diazo compounds react with nucleophiles with heteroatoms, such as alcohols and amines, to generate highly active oxonium/ammonium ylides intermediates. These intermediates can be trapped by appropriate electrophiles to provide three‐component products. Based on this novel trapping process, we have developed novel multicomponent reactions (MCRs) of diazo compounds, alcohols/anilines, and electrophiles. The nucleophiles were also extended to electron‐rich heterocycles (indoles and pyrroles)/arenes, in which the resulting zwitterionic intermediates were also trapped by electrophiles. By employing efficient catalysis strategy, the reactions were realized with excellent stereocontrol and wide substrate scope. In this personal account, we introduce our breakthroughs in the development of novel asymmetric MCRs via trapping of the active ylides and zwitterionic intermediates with a number of electrophiles, such as imines, aldehyde, and Michael acceptors, under asymmetric catalysis. Transition metal/chiral Lewis acid catalysis, transition metal/Brønsted acid catalysis, and chiral transition‐metal catalysis, enable excellent stereocontrolled outcomes. The methodologies not only provide experimental evidence to support the existence of protic onium ylides intermediates/zwitterionic intermediates and the stepwise pathways of carbene‐induced O?H, N?H and C?H insertions, but also offer a novel approach for the efficient construction of chiral polyfunctional molecules.  相似文献   

10.
The straightforward and efficient synthesis of naphtho[1,8‐bc]pyran derivatives and related polycyclic compounds is achieved by the rhodium‐catalyzed oxidative coupling of 1‐naphthols or other phenolic and alcoholic substrates with alkynes. In these annulation reactions, the hydroxy groups effectively act as the key function for the regioselective C? H bond cleavage.  相似文献   

11.
Expanding the toolbox of C?H functionalization reactions applicable to the late‐stage modification of complex molecules is of interest in medicinal chemistry, wherein the preparation of structural variants of known pharmacophores is a key strategy for drug development. One manifold for the functionalization of aromatic molecules utilizes diazo compounds and a transition‐metal catalyst to generate a metallocarbene species, which is capable of direct insertion into an aromatic C?H bond. However, these high‐energy intermediates can often require directing groups or a large excess of substrate to achieve efficient and selective reactivity. Herein, we report that arene cation radicals generated by organic photoredox catalysis engage in formal C?H functionalization reactions with diazoacetate derivatives, furnishing sp2–sp3 coupled products with moderate‐to‐good regioselectivity. In contrast to previous methods utilizing metallocarbene intermediates, this transformation does not proceed via a carbene intermediate, nor does it require the presence of a transition‐metal catalyst.  相似文献   

12.
The functionalization of C(sp3)?H bonds streamlines chemical synthesis by allowing the use of simple molecules and providing novel synthetic disconnections. Intensive recent efforts in the development of new reactions based on C?H functionalization have led to its wider adoption across a range of research areas. This Review discusses the strengths and weaknesses of three main approaches: transition‐metal‐catalyzed C?H activation, 1,n‐hydrogen atom transfer, and transition‐metal‐catalyzed carbene/nitrene transfer, for the directed functionalization of unactivated C(sp3)?H bonds. For each strategy, the scope, the reactivity of different C?H bonds, the position of the reacting C?H bonds relative to the directing group, and stereochemical outcomes are illustrated with examples in the literature. The aim of this Review is to provide guidance for the use of C?H functionalization reactions and inspire future research in this area.  相似文献   

13.
Carbonylation reactions are a most powerful method for the synthesis of carbonyl‐containing compounds. However, most known carbonylation procedures still require noble‐metal catalysts and the use of activated compounds and good nucleophiles as substrates. Herein, we developed a copper‐catalyzed carbonylative transformation of cycloalkanes and amides. Imides were prepared in good yields by carbonylation of a C(sp3)?H bond of the cycloalkane with the amides acting as weak nucleophiles. Notably, this is the first report of copper‐catalyzed carbonylative C?H activation.  相似文献   

14.
Based on the assumption that intramolecularly formed protic oxonium ylides could be trapped by electrophiles, transition‐metal‐catalyzed reactions of diazoesters bearing a primary hydroxy group with electron‐deficient aldehydes and isatins were examined. Good to high chemo‐ and diastereoselectivities were achieved with reactions catalyzed by Cu(hfacac)2. The reactions were assumed to occur via tandem intramolecular protic oxonium ylide formation and subsequent aldol‐type addition. They not only provided an efficient entry to 3‐substituted 1,4‐dioxan‐2‐one heterocycles with at least one quaternary carbon center but also provided experimental evidence for a stepwise pathway for the transition‐metal‐catalyzed intramolecular O? H insertion of diazo compounds.  相似文献   

15.
The development of ecofriendly methods for carbon–carbon (C?C) and carbon–heteroatom (C?Het) bond formation is of great significance in modern‐day research. Metal‐free cross‐dehydrogenative coupling (CDC) has emerged as an important tool for organic and medicinal chemists as a means to form C?C and C?Het bonds, as it is atom economical and more efficient and greener than transition‐metal catalyzed CDC reactions. Molecular iodine (I2) is recognized as an inexpensive, environmentally benign, and easy‐to‐handle catalyst or reagent to pursue CDCs under mild reaction conditions, with good regioselectivities and broad substrate compatibility. This review presents the recent developments of I2‐catalyzed C?C, C?N, C?O, and C?S/C?Se bond‐forming reactions for the synthesis of various important organic molecules by cross‐dehydrogenative coupling.  相似文献   

16.
The addition of nucleophiles to C?N bonds offers a highly efficient synthetic strategy for accessing nitrogen‐containing molecules. 1 Among the well‐developed addition reactions, such as the highly efficient Mannich reaction, various C? H bond‐activated compounds including carboxylic acid derivatives, nitroalkanes, and terminal alkynes have been applied as nucleophiles to achieve different classes of amines. 2 However, employing new nucleophiles without activated C? H bonds, such as internal alkynes and allenic esters are limited when using metal catalysts. 3 Herein, we wish to report a new addition of allenic esters to C?N bonds initiated by a silver‐catalyzed 1,3‐migration of propargylic esters.  相似文献   

17.
Enantioselective construction of axially chiral biaryls by direct C? H bond functionalization reactions has been realized. Novel axially chiral biaryls were synthesized by the direct C? H bond olefination of biaryl compounds, using a chiral [Cp*RhIII] catalyst, in good to excellent yields and enantioselectivities. The obtained axially chiral biaryls were found as suitable ligands for rhodium‐catalyzed asymmetric conjugate additions.  相似文献   

18.
The biheteroaryl structural motif is prevalent in polymers, advanced materials, liquid crystals, ligands, molecules of medicinal interest, and natural products. Many types of synthetic transformations have been known for the construction of heteroaryl–heteroaryl linkages. Coupling reactions provide one of the most efficient ways to achieve these biheterocyclic structures. In this review, four types of coupling reactions are discussed: 1) transition‐metal‐catalyzed coupling reactions of heteroaryl halides or surrogates with heteroarylmetals; 2) direct inter‐ and intramolecular heteroarylations of C? H bonds of heteroarenes with heteroaryl halides or pseudohalides; 3) oxidative C? H/C? H homo‐ and cross‐couplings of two unpreactivated heteroarenes; and 4) transition‐metal‐catalyzed decarboxylative cross‐coupling reactions between haloheteroarenes or heteroarenes and heteroarenecarboxylic acids. The general purpose of this review is to give an exhaustive and clear picture in heteroaryl–heteroaryl bond formation as well as its application in the synthesis of natural products, pharmaceuticals, catalyst ligands, and materials.  相似文献   

19.
Transition metal catalyzed C?H phosphorylation remains an unsolved challenge. Reported methods are generally limited in scope and require stoichiometric silver salts as oxidants. Reported here is an electrochemically driven RhIII‐catalyzed aryl C?H phosphorylation reaction that proceeds through H2 evolution, obviating the need for stoichiometric metal oxidants. The method is compatible with a variety of aryl C?H and P?H coupling partners and particularly useful for synthesizing triarylphosphine oxides from diarylphosphine oxides, which are often difficult coupling partners for transition metal catalyzed C?H phosphorylation reactions. Experimental results suggest that the mechanism responsible for the C?P bond formation involves an oxidation‐induced reductive elimination process.  相似文献   

20.
Strained ring systems are regarded as privileged coupling partners in directed C?H bond functionalization and have emerged as a potential research area in organic synthesis. The inherent ring strain in these systems acts as a driving force, allowing the facile construction of diversified structural scaffolds via integrating C?H activation and ring‐scission. The mechanistic underpinnings allows the implementation of a plethora of C?H bonds across plentiful organic substrates, including the less reactive alkyl ones. Considering the synthetic space, this area will foster developments of novel synthetic methods in chelation guided C?H functionalization. This review will focus on recent developments in transition‐metal catalyzed chelation assisted concomitant C?H activation and ring scission of strained rings to attain molecular complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号