首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
β‐Lactams are very important structural motifs because of their broad biological activities as well as their propensity to engage in ring‐opening reactions. Transition‐metal‐catalyzed C? H functionalizations have emerged as strategy enabling yet uncommon highly efficient disconnections. In contrast to the significant progress of Pd0‐catalyzed C? H functionalization for aryl–aryl couplings, related reactions involving the formation of saturated C(sp3)? C(sp3) bonds are elusive. Reported here is an asymmetric C? H functionalization approach to β‐lactams using readily accessible chloroacetamide substrates. Important aspects of this transformation are challenging C(sp3)? C(sp3) and strain‐building reductive eliminations to for the four‐membered ring. In general, the β‐lactams are formed in excellent yields and enantioselectivities using a bulky taddol phosphoramidite ligand in combination with adamantyl carboxylic acid as cocatalyst.  相似文献   

2.
Visible‐light photoredox catalysis has been successfully used in the functionalization of inert C?H bonds including C(sp2)‐H bonds of arenes and C(sp3)‐H bonds of aliphatic compounds over the past decade. These transformations are typically promoted by the process of single‐electron‐transfer (SET) between substrates and photo‐excited photocatalyst upon visible light irradiation (household bulbs or LEDs). Compared with other synthetic strategies, such as the transition‐metal catalysis and traditional radical reactions, visible‐light photoredox approach has distinct advantages in terms of operational simplicity and practicability. Versatile direct functionalization of inert C(sp2)‐H and C(sp3)‐H bonds including alkylation, trifluoromethylation, arylation and amidation, has been achieved using this practical strategy.  相似文献   

3.
A highly stereoselective three‐component C(sp2)?H bond addition across alkene and polarized π‐bonds is reported for which CoIII catalysis was shown to be much more effective than RhIII. The reaction proceeds at ambient temperature with both aryl and alkyl enones employed as efficient coupling partners. Moreover, the reaction exhibits extremely broad scope with respect to the aldehyde input; electron rich and poor aromatic, alkenyl, and branched and unbranched alkyl aldehydes all couple in good yield and with high diastereoselectivity. Multiple directing groups participate in this transformation, including pyrazole, pyridine, and imine functional groups. Both aromatic and alkenyl C(sp2)?H bonds undergo the three‐component addition cascade, and the alkenyl addition product can readily be converted into diastereomerically pure five‐membered lactones. Additionally, the first asymmetric reactions with CoIII‐catalyzed C?H functionalization are demonstrated with three‐component C?H bond addition cascades employing N‐tert‐butanesulfinyl imines. These examples represent the first transition metal catalyzed C?H bond additions to N‐tert‐butanesulfinyl imines, which are versatile and extensively used intermediates for the asymmetric synthesis of amines.  相似文献   

4.
In this article, we present the progress made in the area of carbonylative C? H functionalization, with special emphasis on arenes and alkanes. The importance of directing group assistance and C? H functionalization using CO surrogates is also included. The budding development in the area of transition metal‐catalyzed C(sp3)? H activation makes us feel it necessary to file a summary on the past, as well as current, contributions and a prospective outlook on the transition metal‐catalyzed carbonylative transformation of C? H bonds, which is the focus of this review.  相似文献   

5.
C?C triple bonds are amongst the most versatile functional groups in synthetic chemistry. Complementary to the Sonogashira coupling the direct metal‐catalyzed alkynylation of C?H bonds has emerged as a highly promising approach in recent years. To guarantee a high regioselectivity suitable directing groups (DGs) are necessary to guide the transition metal (TM) into the right place. In this Focus Review we present the current developments in DG‐mediated C(sp2)?H and C(sp3)?H modifications with terminal alkynes under oxidative conditions and with electrophilic alkynylation reagents. We will discuss further modifications of the alkyne, in particular subsequent cyclizations to carbo‐ and heterocycles and modifications of the DG in the presence of the alkyne.  相似文献   

6.
Intramolecular dehydrogenative cyclization of aliphatic amides was achieved on unactivated sp3 carbon atoms by a nickel‐catalyzed C?H bond functionalization process with the assistance of a bidentate directing group. The reaction favors the C?H bonds of β‐methyl groups over the γ‐methyl or β‐methylene groups. Additionally, a predominant preference for the β‐methyl C?H bonds over the aromatic sp2 C?H bonds was observed. Moreover, this process also allows for the effective functionalization of benzylic secondary sp3 C?H bonds.  相似文献   

7.
The intramolecular dehydrogenative amidation of aliphatic amides, directed by a bidentate ligand, was developed using a copper‐catalyzed sp3 C? H bond functionalization process. The reaction favors predominantly the C? H bonds of β‐methyl groups over the unactivated methylene C? H bonds. Moreover, a preference for activating sp3 C? H bonds of β‐methyl groups, via a five‐membered ring intermediate, over the aromatic sp2 C? H bonds was also observed in the cyclometalation step. Additionally, sp3 C? H bonds of unactivated secondary sp3 C? H bonds could be functionalized by favoring the ring carbon atoms over the linear carbon atoms.  相似文献   

8.
A redox‐neutral, light‐mediated functionalization of unactivated C(sp3)−H bonds via iminyl radicals is presented here. A 1,5‐H transfer followed by the functionalization of a C(sp2)−H bond takes place in aqueous media producing a variety of elaborated fused ketones. Mechanistic investigations have revealed 1,5‐H transfer as the reversible, rate‐determining step in this transformation. Divergent scaffolds are also accessible via C(sp3)−N bond formation upon a careful choice of the reaction additives.  相似文献   

9.
One of the major challenges in organic synthesis is the activation or deconstructive functionalization of unreactive C(sp3)–C(sp3) bonds, which requires using transition or precious metal catalysts. We present here an alternative: the deconstructive lactamization of piperidines without using transition metal catalysts. To this end, we use 3‐alkoxyamino‐2‐piperidones, which were prepared from piperidines through a dual C(sp3)–H oxidation, as transitory intermediates. Experimental and theoretical studies confirm that this unprecedented lactamization occurs in a tandem manner involving an oxidative deamination of 3‐alkoxyamino‐2‐piperidones to 3‐keto‐2‐piperidones, followed by a regioselective Baeyer–Villiger oxidation to give N‐carboxyanhydride intermediates, which finally undergo a spontaneous and concerted decarboxylative intramolecular translactamization.  相似文献   

10.
A transition‐metal‐ and oxidant‐free DNP (2,4‐dinitrophenol)‐catalyzed atom‐economical regio‐ and diastereoselective synthesis of monofunctionalized α‐alkynyl‐3‐amino‐2‐oxindole derivatives by C?H bond functionalization of cyclic amines and alkynes with indoline‐2,3‐diones has been developed. This cascade event sequentially involves the reductive amination of indoline‐2,3‐dione by imine formation and cross coupling between C(sp3)?H and C(sp)?H of the cyclic amines and alkynes. This reaction offers an efficient and attractive pathway to different types of α‐alkynyl‐3‐amino‐2‐oxindole derivatives in good yields with a wide tolerance of functional groups. The salient feature of this methodology is that it completely suppresses the homocoupling of alkynes. To the best of our knowledge, this is the first example of a DNP‐catalyzed metal‐free direct C(sp3)?H and C(sp)?H bond functionalization providing biologically active α‐alkynyl‐3‐amino‐2‐oxindole scaffolds.  相似文献   

11.
This Review summarizes advances in fluorination by C(sp2)?H and C(sp3)?H activation. Transition‐metal‐catalyzed approaches championed by palladium have allowed the installation of a fluorine substituent at C(sp2) and C(sp3) sites, exploiting the reactivity of high‐oxidation‐state transition‐metal fluoride complexes combined with the use of directing groups (some transient) to control site and stereoselectivity. The large majority of known methods employ electrophilic fluorination reagents, but methods combining a nucleophilic fluoride source with an oxidant have appeared. External ligands have proven to be effective for C(sp3)?H fluorination directed by weakly coordinating auxiliaries, thereby enabling control over reactivity. Methods relying on the formation of radical intermediates are complementary to transition‐metal‐catalyzed processes as they allow for undirected C(sp3)?H fluorination. To date, radical C?H fluorinations mainly employ electrophilic N?F fluorination reagents but a unique MnIII‐catalyzed oxidative C?H fluorination using fluoride has been developed. Overall, the field of late‐stage nucleophilic C?H fluorination has progressed much more slowly, a state of play explaining why C?H 18F‐fluorination is still in its infancy.  相似文献   

12.
An easily synthesized and accessible N,O‐bidentate auxiliary has been developed for selective C? H activation under palladium catalysis. The novel auxiliary showed its first powerful application in C? H functionalization of remote positions. Both C(sp2)? H and C(sp3)? H bonds at δ‐ and ε‐positions were effectively activated, thus giving tetrahydroquinolines, benzomorpholines, pyrrolidines, and indolines in moderate to excellent yields by palladium‐catalyzed intramolecular C? H amination.  相似文献   

13.
The site‐selective functionalization of unactivated C(sp3)?H bonds remains one of the greatest challenges in organic synthesis. Herein, we report on the site‐selective δ‐C(sp3)?H alkylation of amino acids and peptides with maleimides via a kinetically less favored six‐membered palladacycle in the presence of more accessible γ‐C(sp3)?H bonds. Experimental studies revealed that C?H bond cleavage occurs reversibly and preferentially at γ‐methyl over δ‐methyl C?H bonds while the subsequent alkylation proceeds exclusively at the six‐membered palladacycle that is generated by δ‐C?H activation. The selectivity can be explained by the Curtin–Hammett principle. The exceptional compatibility of this alkylation with various oligopeptides renders this procedure valuable for late‐stage peptide modifications. Notably, this process is also the first palladium(II)‐catalyzed Michael‐type alkylation reaction that proceeds through C(sp3)?H activation.  相似文献   

14.
Direct amination of C(sp3)?H bonds is of broad interest in the realm of C?H functionalization because of the prevalence of nitrogen heterocycles and amines in pharmaceuticals and natural products. Reported here is a combined electrochemical/photochemical method for dehydrogenative C(sp3)?H/N?H coupling that exhibits good reactivity with both sp2 and sp3 N?H bonds. The results show how use of iodide as an electrochemical mediator, in combination with light‐induced cleavage of intermediate N?I bonds, enables the electrochemical process to proceed at low electrode potentials. This approach significantly improves the functional‐group compatibility of electrochemical C?H amination, for example, tolerating electron‐rich aromatic groups that undergo deleterious side reactions in the presence of high electrode potentials.  相似文献   

15.
Transition‐metal‐catalyzed C–H bond functionalization has become one of the most promising strategies to prepare complex molecules from simple precursors. However, the utilization of environmentally unfriendly oxidants in the oxidative C–H bond functionalization reactions reduces their potential applications in organic synthesis. This account describes our recent efforts in the development of a redox‐neutral C–H bond functionalization strategy for direct addition of inert C–H bonds to unsaturated double bonds and a redox‐green C–H bond functionalization strategy for realization of oxidative C–H functionalization with O2 as the sole oxidant, aiming to circumvent the problems posed by utilizing environmentally unfriendly oxidants. In principle, these redox‐neutral and redox‐green strategies pave the way for establishing new environmentally benign transition‐metal‐catalyzed C–H bond functionalization strategies.  相似文献   

16.
A quinoline‐based ligand effectively promotes the palladium‐catalyzed borylation of C(sp3)? H bonds. Primary β‐C(sp3)? H bonds in carboxylic acid derivatives as well as secondary C(sp3)? H bonds in a variety of carbocyclic rings, including cyclopropanes, cyclobutanes, cyclopentanes, cyclohexanes, and cycloheptanes, can thus be borylated. This directed borylation method complements existing iridium(I)‐ and rhodium(I)‐catalyzed C? H borylation reactions in terms of scope and operational conditions.  相似文献   

17.
β‐Lactams are very important structural motifs because of their broad biological activities as well as their propensity to engage in ring‐opening reactions. Transition‐metal‐catalyzed C H functionalizations have emerged as strategy enabling yet uncommon highly efficient disconnections. In contrast to the significant progress of Pd0‐catalyzed C H functionalization for aryl–aryl couplings, related reactions involving the formation of saturated C(sp3) C(sp3) bonds are elusive. Reported here is an asymmetric C H functionalization approach to β‐lactams using readily accessible chloroacetamide substrates. Important aspects of this transformation are challenging C(sp3) C(sp3) and strain‐building reductive eliminations to for the four‐membered ring. In general, the β‐lactams are formed in excellent yields and enantioselectivities using a bulky taddol phosphoramidite ligand in combination with adamantyl carboxylic acid as cocatalyst.  相似文献   

18.
In recent years, transition‐metal‐catalyzed C?H activation has become a key strategy in the field of organic synthesis. Rhodium complexes are widely used as catalysts in a variety of C?H functionalization reactions because of their high reactivity and selectivity. The availability of a number of rhodium complexes in various oxidation states enables diverse reaction patterns to be obtained. Regioselectivity, an important issue in C?H activation chemistry, can be accomplished by using a directing group to assist the reaction. However, to obtain the target functionalized compounds, it is also necessary to use a directing group that can be easily removed. A wide range of directed C?H functionalization reactions catalyzed by rhodium complexes have been reported to date. In this Review, we discuss Rh‐catalyzed C?H functionalization reactions that are aided by the use of a removable directing group such as phenol, amine, aldehyde, ketones, ester, acid, sulfonic acid, and N‐heteroaromatic derivatives.  相似文献   

19.
The direct functionalization of C? H bonds is an attractive strategy in organic synthesis. Although several advances have been made in this area, the selective activation of inert sp3 C? H bonds remains a daunting challenge. Recently, a new type of sp3 C? H activation mode through internal hydride transfer has demonstrated the potential to activate remote sp3 C? H linkages in an atom‐economic manner. This Minireview attempts to classify recent advances in this area including the transition to non‐activated sp3 C? H bonds and asymmetric hydride transfers.  相似文献   

20.
Transition‐metal‐catalyzed C?H activation has shown potential in the functionalization of peptides with expanded structural diversity. Herein, the development of late‐stage peptide macrocyclization methods by palladium‐catalyzed site‐selective C(sp2)?H olefination of tryptophan residues at the C2 and C4 positions is reported. This strategy utilizes the peptide backbone as endogenous directing groups and provides access to peptide macrocycles with unique Trp–alkene crosslinks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号