首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and fast method named microfunnel‐filter‐based emulsification microextraction is introduced for an efficient determination of some organophosphorus pesticides including diazinon, malathion, and chlorpyrifos in the environmental samples including the river, sea, and well water. This method is based upon the dispersion of a low‐toxicity organic solvent (dihexyl ether), as the extractant, in a high volume of an aqueous sample solution (45 mL). It is implemented without a centrifugation step, and using a syringe filter and a micro‐funnel, the phase separation and transfer of the enriched analytes to the gas chromatograph are simply achieved. By filtration of the extractant phase, a suitable sample clean‐up is obtained, and the total extraction time is just a few minutes. The factors influencing the extraction efficiency are optimized, and under the optimal conditions, the proposed method provides a good linearity (in the range of 15–1500 ng/mL (R2 > 0.996). A high enrichment factor is obtained (in the range of 306–342), and the method provides low limits of detection and quantification (in the ranges of 4–8 and 15–25 ng/mL, respectively).  相似文献   

2.
In this work, an efficient microextraction method was applied for the extraction of some chlorophenols in water samples. This method, termed filter‐based emulsification microextraction, is based on the dispersion of an extractant into an aqueous sample solution to accelerate the extraction process and the utilization of a Nylon syringe filter to break the emulsion. After phase separation, the method is coupled with gas chromatography as a final analyzer instrument. The overall derivatization/extraction time was about 90 s. The proposed method is centrifuge‐free, and it also provides a suitable sample clean‐up by filtration of the extracting phase. The effective parameters involved in the extraction method were optimized. Under the optimal experimental conditions, the method provided a good linearity in the range of 2.0–2000 ng/mL, extraction repeatabilities (relative standard deviations) below 9.4%, enrichment factors of 180–203, and limits of detection between 0.5 and 1.2 ng/mL.  相似文献   

3.
In this work, an efficient sample clean‐up method, named in‐tube electro‐membrane extraction, is modified to resolve the formation of bubbles in the extraction process. This modified method is applied for the extraction of two model analytes including tartrazine and sunset yellow from food samples. The method is based on the electro‐kinetic migration of ionized compounds by the application of an electrical potential difference, and on this basis the analytes under investigation, as anionic compounds, simply migrate from the donor phase and concentrate in the acceptor phase. A thin polypropylene sheet placed in the tube acts as a support for the membrane solvent, and it separates 30 μL of the aqueous acceptor from 1.2 mL of the aqueous donor. This setup can be used to solve the problem of extracting highly hydrophilic analytes. Response surface methodology is used for optimization of the experimental parameters so that under the optimized conditions, the method provides a good linearity in the range of 50–1000 ng/mL, low limits of detection (15–25 ng/mL), good extraction repeatabilities (relative standard deviations below 8.1%, n  = 5), and high extraction recoveries (54–76%).  相似文献   

4.
In‐syringe solid‐phase extraction is a promising sample pretreatment method for the on‐site sampling of water samples because of its outstanding advantages of portability, simple operation, short extraction time, and low cost. In this work, a novel in‐syringe solid‐phase extraction device using metal–organic frameworks as the adsorbent was fabricated for the on‐site sampling of polycyclic aromatic hydrocarbons from environmental waters. Trace polycyclic aromatic hydrocarbons were effectively extracted through the self‐made device followed by gas chromatography with mass spectrometry analysis. Owing to the excellent adsorption performance of metal–organic frameworks, the analytes could be completely adsorbed during one adsorption cycle, thus effectively shortening the extraction time. Moreover, the adsorbed analytes could remain stable on the device for at least 7 days, revealing the potential of the self‐made device for on‐site sampling of degradable compounds in remote regions. The limit of detection ranged from 0.20 to 1.9 ng/L under the optimum conditions. Satisfactory recoveries varying from 84.4 to 104.5% and relative standard deviations below 9.7% were obtained in real samples analysis. The results of this study promote the application of metal–organic frameworks in sample preparation and demonstrate the great potential of in‐syringe solid‐phase extraction for the on‐site sampling of trace contaminants in environmental waters.  相似文献   

5.
Diallyldimethylammonium chloride modified magnetic nanoparticles were synthesized by the “thiol‐ene” click chemistry reaction. Diallyldimethylammonium chloride rendered the material plenty of quaternary ammonium groups, and thus the excellent aqueous dispersibility and anion‐exchange capability. The novel material was then used as the magnetic solid‐phase extraction sorbent to extract eight non‐steroidal anti‐inflammatory drugs from water samples. Combined with high‐performance liquid chromatography and ultraviolet detection, under the optimal conditions, the developed method exhibited wide linearity ranges (1–1000, 2–1000, and 5–1000 ng/mL) with recoveries of 88.0–108.6% and low limits of detection (0.3–1.5 ng/mL). Acceptable precision was obtained with satisfactory intra‐ and inter‐day relative standard deviations of 0.4–4.4% (= 3) and 1.1–5.5% (= 3), respectively. Batch‐to‐batch reproducibility was acceptable with relative standard deviations <9.7%. The hydrophilic magnetic nanoparticle featured with quaternary ammonium groups showed high analytical potential for acidic analytes in environmental water samples.  相似文献   

6.
A simple hydrophilic polyamide organic membrane protected micro‐solid‐phase extraction method with graphene oxide as the sorbent was developed for the enrichment of some parabens from water and vinegar samples prior to gas chromatography with mass spectrometry detection. The main experimental parameters affecting the extraction efficiencies, such as the type and amount of the sorbent, extraction time, stirring rate, salt addition, sample solution pH and desorption conditions, were investigated. Under the optimized experimental conditions, the method showed a good linearity in the range of 0.1–100.0 ng/mL for water samples and 0.5–100.0 ng/mL for vinegar samples, with the correlation coefficients varying from 0.9978 to 0.9997. The limits of detection (S/N = 3) of the method were in the range of 0.005–0.010 ng/mL for water samples and 0.01–0.05 ng/mL for vinegar samples, respectively. The recoveries of the method for the analytes at spiking levels of 5.0 and 70.0 ng/mL were between 84.6 and 106.4% with the relative standard deviations varying from 4.2 to 9.5%. The results indicated that the developed method could be a practical approach for the determination of paraben residues in water and vinegar samples.  相似文献   

7.
Chemical warfare agents such as organophosphorus nerve agents, mustard agents, and psychotomimetic agent like 3‐quinuclidinylbenzilate degrade in the environment and form acidic degradation products, the analysis of which is difficult under normal analytical conditions. In the present work, a simultaneous extraction and derivatization method in which the analytes are butylated followed by gas chromatography and mass spectrometric identification of the analytes from aqueous and soil samples was carried out. The extraction was carried out using ion‐pair solid‐phase extraction with tetrabutylammonium hydroxide followed by gas chromatography with mass spectrometry in the electron ionization mode. Various parameters such as optimum concentration of the ion‐pair reagent, pH of the sample, extraction solvent, and type of ion‐pair reagent were optimized. The method was validated for various parameters such as linearity, accuracy, precision, and limit of detection and quantification. The method was observed to be linear from 1 to 1000 ng/mL range in selected ion monitoring mode. The extraction recoveries were in the range of 85–110% from the matrixes with the limit of quantification for alkyl phosphonic acids at 1 ng/mL, thiodiglycolic acid at 20 ng/mL, and benzilic acid at 50 ng/mL with intra‐ and interday precisions below 15%. The developed method was applied for the samples prepared in the scenario of challenging inspection.  相似文献   

8.
A novel and reliable method for determination of five triazole fungicide residues (triadimenol, tebuconazole, diniconazole, flutriafol, and hexaconazol) in traditional Chinese medicine samples was developed using dispersive solid‐phase extraction combined with ultrasound‐assisted dispersive liquid–liquid microextraction before ultra‐high performance liquid chromatography with tandem mass spectrometry. The clean up of the extract was conducted using dispersive solid‐phase extraction by directly adding sorbents into the extraction solution, followed by shaking and centrifugation. After that, a mixture of 400 μL trichloromethane (extraction solvent) and 0.5 mL of the above supernatant was injected rapidly into water for the dispersive liquid–liquid microextraction procedure. The factors affecting the extraction efficiency were optimized. Under the optimum conditions, the calibration curves showed good linearity in the range of 2.0–400 (tebuconazole, diniconazole, and hexaconazole) and 4.0–800 ng/g (triadimenol and flutriafol) with the regression coefficients higher than 0.9958. The limit of detection and limit of quantification for the present method were 0.5–1.1 and 1.8–4.0 ng/g, respectively. The recoveries of the target analytes ranged from 80.2 to 103.2%. The proposed method has been successfully applied to the analysis of five triazole fungicides in traditional Chinese medicine samples, and satisfactory results were obtained.  相似文献   

9.
A three‐dimensional graphene was synthesized through a hydrothermal reaction of graphene oxide with phytic acid. The microstructure and morphology of the phytic acid induced three‐dimensional graphene were investigated by nitrogen adsorption–desorption isotherms, scanning electron microscopy, and transmission electron microscopy. With a large surface area and three‐dimensional structure, the graphene was used as the solid‐phase extraction adsorbent for the extraction of phthalate esters from bottled water and sports beverage samples before high‐performance liquid chromatographic analysis. The results indicated that the graphene was efficient for the solid‐phase extraction of phthalate esters. The limits of detection (S/N = 3) of the method for the analytes were 0.02–0.03 ng/mL for the water samples and 0.03–0.15 ng/mL for the sports beverage sample. The limits of quantitation (S/N = 9) for the analytes were 0.06–0.09 ng/mL for water samples and 0.09–0.45 ng/mL for sports beverage sample. The calibration curves for the phthalate esters by the method had a good linearity from 0.1 to 80.0 ng/mL with correlation coefficients larger than 0.9997. The recoveries of the analytes for the method fell in the range of 86.7–116.2% with the relative standard deviations between 1.5 and 6.8%.  相似文献   

10.
A three‐phase hollow‐fiber liquid‐phase microextraction based on deep eutectic solvent as acceptor phase was developed and coupled with high‐performance capillary electrophoresis for the simultaneous extraction, enrichment, and determination of main active compounds (hesperidin, honokiol, shikonin, magnolol, emodin, and β,β′‐dimethylacrylshikonin) in a traditional Chinese medicinal formula. In this procedure, two hollow fibers, impregnated with n‐heptanol/n‐nonanol (7:3, v/v) mixture in wall pores as the extraction phase and a combination (9:1, v/v) of methyltrioctylammonium chloride/glycerol (1:3, n/n) and methanol in lumen as the acceptor phase, were immersed in the aqueous sample phase. The target analytes in the sample solution were first extracted through the organic phase, and further back‐extracted to the acceptor phase during the stirring process. Important extraction parameters such as types and composition of extraction solvent and deep eutectic solvent, sample phase pH, stirring rate, and extraction time were investigated and optimized. Under the optimal conditions, detection limits were 0.3–0.8 ng/mL with enrichment factors of 6–114 for the analytes and linearities of 0.001–13 μg/mL (r2 ≥ 0.9901). The developed method was successfully applied to the simultaneous extraction and concentration of the main active compounds in a formula of Zi‐Cao‐Cheng‐Qi decoction with the major advantages of convenience, effectiveness, and environmentally friendliness.  相似文献   

11.
Metal–organic frameworks‐5 (MOF‐5) was explored as a template to prepare porous carbon due to its high surface area, large pore volume, and permanent nanoscale porosity. Magnetic porous carbon, Co@MOF‐5‐C, was fabricated by the one‐step direct carbonization of Co‐doped MOF‐5. After carbonization, the magnetic cobalt nanoparticles are well dispersed in the porous carbon matrix, and Co@MOF‐5‐C displays strong magnetism (with the saturation magnetization intensity of 70.17emu/g), high‐specific surface area, and large pore volume. To evaluate its extraction performance, the Co@MOF‐5‐C was applied as an adsorbent for the magnetic solid‐phase extraction of endocrine disrupting chemicals, followed by their analysis with high‐performance liquid chromatography. The developed method exhibits a good linear response in the range of 0.5–100 ng/mL for pond water and 1.0–100 ng/mL for juice samples. The limits of detection (S/N  = 3) for the analytes were in the range of 0.1–0.2 ng/mL.  相似文献   

12.
Saxitoxin, which is one of the most typical paralytic shellfish poisoning toxins, ranks the highest intoxication rate of marine biological poisoning cases globally. Efficient clean‐up and extraction of saxitoxin from complex biological matrices are imperative for the analysis and concentration monitoring of the toxin when correlative poisoning cases happen. Herein, l ‐cysteine‐modified magnetic microspheres based on metal‐organic coordination were synthesized by a facile approach and applied for magnetic solid‐phase extraction of saxitoxin from rat plasma samples before liquid chromatography–tandem mass spectrometry detection. Parameters, including adsorbent amount, extraction time, desorption solution, and desorption time that could affect the extraction efficiency, were respectively investigated. The developed method demonstrated good linearity in the range of 5–300 ng/mL (R= 0.9985) with a limit of quantification of 5 ng/mL and a limit of detection of 0.5 ng/mL, acceptable accuracy. and precision of within‐run and between‐run.  相似文献   

13.
Simultaneous derivatization and air‐assisted liquid–liquid microextraction using an organic that is solvent lighter than water has been developed for the extraction of some parabens in different samples with the aid of a newly designed device for collecting the extractant. For this purpose, the sample solution is transferred into a glass test tube and a few microliters of acetic anhydride (as a derivatization agent) and p‐xylene (as an extraction solvent) are added to the solution. After performing the procedure, the homemade device consists of an inverse funnel with a capillary tube placed into the tube. In this step, the collected extraction solvent and a part of the aqueous solution are transferred into the device and the organic phase indwells in the capillary tube of the device. Under the optimal conditions, limits of detection and quantification for the analytes were obtained in the ranges of 0.90–2.7 and 3.0–6.1 ng/mL, respectively. The enrichment and enhancement factors were in the ranges of 370–430 and 489–660, respectively. The method precision, expressed as the relative standard deviation, was within the range of 4–6% (= 6) and 4–9% (= 4) for intra‐ and interday precisions, respectively. The proposed method was successfully used for the determination of methyl‐, ethyl‐, and propyl parabens in cosmetic, hygiene and food samples, and personal care products.  相似文献   

14.
The biomonitoring of hydroxy polycyclic aromatic hydrocarbons in urine, as a direct way to access multiple exposures to polycyclic aromatic hydrocarbons, has raised great concerns due to their increasing hazardous health effects on humans. Solid‐phase extraction is an effective and useful technique to preconcentrate trace analytes from biological samples. Here, we report a novel solid‐phase extraction method using a graphene oxide incorporated monolithic syringe for the determination of six hydroxy polycyclic aromatic hydrocarbons in urine coupled with liquid chromatography‐tandem mass spectrometry. The effect of graphene oxide amount, washing solvent, eluting solvent, and its volume on the extraction performance were investigated. The fabricated monoliths gave higher adsorption efficiency and capacity than the neat polymer monolith and commercial C18 sorbent. Under the optimum conditions, the developed method provided the detection limits (S/N = 3) of 0.02–0.1 ng/mL and the linear ranges of 0.1–1500 ng/mL for six analytes in urine sample. The recoveries at three spiked levels ranged from 77.5 to 97.1%. Besides, the intra column‐to‐column (n = 3) and inter batch‐to‐batch (n = 3) precisions were ≤ 9.8%. The developed method was successfully applied for the determination of hydroxy polycyclic aromatic hydrocarbons in urine samples of coke oven workers.  相似文献   

15.
A novel hollow‐fiber liquid‐phase microextraction based on oil‐in‐salt was proposed and introduced for the simultaneous extraction and enrichment of the main active compounds of hesperidin, honokiol, shikonin, magnolol, emodin, and β,β′‐dimethylacrylshikonin in a formula of Zi‐Cao‐Cheng‐Qi decoction and the single herb, Fructus Aurantii Immaturus , Cortex Magnoliae Officinalis , Radix et Rhizoma , and Lithospermum erythrorhizon , composing the formula prior to their analysis by high‐performance liquid chromatography. The results obtained by the proposed procedure were compared with those obtained by conventional hollow‐fiber liquid‐phase microextraction, and the proposed procedure mechanism was described. In the procedure, a hollow‐fiber segment was first immersed in organic solvent to fill the solvent in the fiber lumen and wall pore, and then the fiber was again immersed into sodium chloride solution to cover a thin salt membrane on the fiber wall pore filling organic solvent. Under the optimum conditions, the enrichment factors of the analytes were 0.6–109.4, linearities were 0.002–12 μg/mL with r 2 ≥ 0.9950, detection limits were 0.6–12 ng/mL, respectively. The results showed that oil‐in‐salt hollow‐fiber liquid‐phase microextraction is a simple and effective sample pretreatment procedure and suitable for the simultaneous extraction and concentration of trace‐level active compounds in traditional Chinese medicine.  相似文献   

16.
A novel liquid–liquid microextraction method, namely, solvent‐vapor‐assisted liquid–liquid microextraction for the determination of dimethyl phthalate, diethyl phthalate, dibutyl phthalate and bis(2‐ethylhexyl) phthalate in the aqueous samples using gas chromatography with mass spectrometry was developed. In the proposed method, extracting solvent was heated, and solvent vapor as the extracting phase was injected into the sample solution. As a result of the low temperature of the sample solution and higher density of the extracting phase than the aqueous medium, solvent vapor was condensed and an organic‐phase drop formed in the bottom of sample tube. Because of the gas status of the extracting solvent, the surface area between the extracting solvent and the aqueous sample was remarkably high. Under the optimized conditions, tetrachloride carbon was used as an extracting solvent. The method shows high coefficient of determination (R 2) values in the range of 0.5–200 and 1.0–200 ng/mL for the target analytes. Enrichment factors and limits of detection for the studied phthalates are obtained in the ranges of 2800–3000 and 0.15–0.3 ng/mL, respectively. Recoveries and relative standard deviations were in the range of 80.0–100.0 and 2.2–7.8%, respectively. The proposed method successfully used for analysis of several aqueous samples.  相似文献   

17.
A simple in‐line single drop liquid–liquid–liquid microextraction (SD‐LLLME) coupled with CE for the determination of two fluoroquinolones was developed. The method is capable to quantify trace amount of analytes in water samples and to improve the sensitivity of CE detection. For the SD‐LLLME, a thin layer of organic phase was used to separate a drop of 0.1 M NaOH hanging at the inlet of the capillary from the aqueous donor phase. By this way, the analytes were extracted to the acceptor phase through the organic layer based on their acidic/basic dissociation equilibrium. The drop was immersed into the organic phase during 10 min for extraction and then it is directly injected into the capillary for the analysis. Parameters such as type and volume of organic solvent phase, aqueous donor, and acceptor phases and extraction time and temperature were optimized. The enrichment factor was calculated, resulting 40‐fold for enrofloxacin (ENR) and sixfold for ciprofloxacin (CIP). The linear range were 20–400 μg/L for ENR and 60–400 μg/L for CIP. The detection limits were 10.1 μg/L and 55.3 μg/L for ENR and CIP, respectively, and a good reproducibility was obtained (4.4% for ENR and 5.6% for CIP). Two real water samples were analysed applying the new method and the obtained results presented satisfactory recovery percentages (90–100.3%).  相似文献   

18.
A new micro‐solid‐phase extraction sorbent was synthesized by electrospinning poly(p‐phenylenediamine)/poly(vinyl alcohol) in the presence of cetyltrimethylammonium bromide. The modified nanofiber was prepared by removing the majority of the poly(vinyl alcohol) from the nanofiber blend by exposing it to the hot water. Scanning electron microscopy and surface analysis were performed to study the homogeneity and porosity of the electrospun nanofiber. In addition, Fourier transform infrared spectroscopy was applied for more characterization. The capability of the new nanofiber was explored by applying it in the extraction and preconcentration of organophosphorus pesticides from aqueous medium. After solvent desorption, the extracted analytes were analyzed by high‐performance liquid chromatography with diode array detection. Under the optimum conditions, the relative standard deviation values at the concentration level of 50 ng/mL were in the range of 4.8–8.3%. The calibration curve showed linearity in the range of 0.5–500 ng/mL, and the limits of detection (S/N = 3) for the studied compounds were 0.15 ng/mL. By analyzing Tehran drinking water, lemon juice, sour lemon juice, orange juice and sour orange juice, the applicability of the presented method was investigated and the relative recoveries were in the range of 76–102%.  相似文献   

19.
In this study, a new two–step extraction procedure based on the combination of a modified quick, easy, cheap, effective, rugged, and safe extraction method with a deep eutectic solvent based microwave‐assisted dispersive liquid–liquid microextraction has been developed for the extraction of multiclass pesticides in tomato samples before their analysis by gas chromatography with flame ionization detection. In this method, initially, an aliquot of tomato is crushed and diluted with deionized water. The mixture is then passed through a filter paper and its residue and aqueous phase are separated. Afterwards, acetonitrile as an extraction/disperser solvent is passed through the filter paper containing the refuse. The analytes remained in the refuse are extracted into the acetonitrile and then the obtained extract is mixed with a deep eutectic solvent. The obtained mixture is injected into the tomato juice and placed in a microwave oven for 15 s. Consequently, a cloudy state is formed and the extractant containing the analytes are sedimented at the bottom of the tube after centrifugation. Finally, 1 μL of the sedimented phase is removed and injected into the separation system. Under the optimum conditions, limits of detection and quantification were in the ranges of 0.42–0.74 and 1.4–2.5 ng/g, respectively.  相似文献   

20.
A simple and sensitive analytical method for four isomers of glycopyrrolate in rat plasma was developed using cation‐selective exhaustive injection‐sweeping cyclodextrin‐modified electrokinetic chromatography (CSEI‐Sweeping‐CDEKC) for online enrichment combined with dispersive micro‐solid‐phase extraction pretreatment. The CSEI‐Sweeping‐CDEKC was conducted on an uncoated fused silica capillary (40.2 cm × 75 μm) with an applied voltage of –20 kV. The electrophoretic analysis was carried out in 30 mM phosphate solution at pH 2.0 containing 20 mg/mL sulfated‐β‐cyclodextrin and 5% acetonitrile. Under these optimized conditions, the detection limit for racemic glycopyrrolate was found to be 2.0 ng/mL and this method could increase 495‐fold detection sensitivity compared with the traditional injection method. Additionally, the parameters that affected the extraction efficiency of dispersive micro‐solid‐phase extraction were also examined systematically. The glycopyrrolate isomers in rat plasma samples as low as 0.0625 μg/mL were able to be separated and detected by capillary electrophoresis with the aid of CSEI‐sweeping. The findings of this study show that the dispersive micro‐solid‐phase extraction pretreatment coupled with CSEI‐Sweeping‐CDEKC is a rapid and convenient method for analyzing glycopyrrolate isomers in rat plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号