首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present research is based on the concept of using a 10 m × 0.1 mm id column for cryogenic‐modulation fast comprehensive two‐dimensional gas chromatography with quadrupole mass spectrometry. Specifically, an 8.9 m × 0.1 mm id low‐polarity column was used as the first dimension, and a 1.1 m × 0.1 mm id medium‐polarity column was used as the second dimension. The main scope of the investigation was to develop a high peak‐capacity method, with an analysis time of approximately 10 min. Various aspects related to method optimization are discussed, as well as separation parameters such as peak capacity (in each dimension, and as a total value), first‐dimension sample capacity, peak widths, modulation ratio, sensitivity enhancement, and number of spectra per peak. The fast approach was evaluated in applications involving a mixture of cosmetic allergens and a sample of perfume. The approach proposed enables high‐resolution separations in a short time (across the C8–C23 alkane range), as well as a considerable reduction of the consumption of gases for modulation cooling and heating.  相似文献   

2.
A highly sensitive and selective on‐line two‐dimensional reversed‐phase liquid chromatography/electrospray ionization–tandem mass spectrometry (2D‐LC‐ESI/MS/MS) method was developed and validated to determine rifaximin in rat serum by direct injection. The 2D‐LC‐ESI/MS/MS system consisted of a restricted access media column for trapping proteins as the first dimension and a Waters C18 column as second dimension using 0.1% aqueous acetic acid:acetonitrile as mobile phase in a gradient elution mode. Rifampacin was used as an internal standard. The linear dynamic range was 0.5–10 ng/mL (r2 > 0.998). Acceptable precision and accuracy were obtained over the calibration range. The assay was successfully used in analysis of rat serum to support pharmacokinetic studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Two‐dimensional liquid chromatography largely increases the number of separated compounds in a single run, theoretically up to the product of the peaks separated in each dimension on the columns with different selectivities. On‐line coupling of a reversed‐phase column with an aqueous normal‐phase (hydrophilic interaction liquid chromatography) column yields orthogonal systems with high peak capacities. Fast on‐line two‐dimensional liquid chromatography needs a capillary or micro‐bore column providing low‐volume effluent fractions transferred to a short efficient second‐dimension column for separation at a high mobile phase flow rate. We prepared polymethacrylate zwitterionic monolithic micro‐columns in fused silica capillaries with structurally different dimethacrylate cross‐linkers. The columns provide dual retention mechanism (hydrophilic interaction and reversed‐phase). Setting the mobile phase composition allows adjusting the separation selectivity for various polar substance classes. Coupling on‐line an organic polymer monolithic capillary column in the first dimension with a short silica‐based monolithic column in the second dimension provides two‐dimensional liquid chromatography systems with high peak capacities. The silica monolithic C18 columns provide higher separation efficiency than the particle‐packed columns at the flow rates as high as 5 mL/min used in the second dimension. Decreasing the diameter of the silica monolithic columns allows using a higher flow rate at the maximum operation pressure and lower fraction volumes transferred from the first, hydrophilic interaction dimension, into the second, reversed‐phase mode, avoiding the mobile phase compatibility issues, improving the resolution, increasing the peak capacity, and the peak production rate.  相似文献   

4.
In this study, an improved online comprehensive two‐dimensional liquid chromatography platform coupled to tandem mass spectrometry was developed for the analysis of complex polyphenolic samples. A narrowbore hydrophilic interaction chromatography column (150 × 2.0 mm, 3.0 μm, cross‐linked diol) was employed in the first dimension, while a reversed‐phase column based on monodisperse sub‐2 μm fully porous particles (50 × 3.0 mm, 1.9 μm d.p.) with high surface area (410 m2/g) was employed in the second dimension. The combination of a trapping column modulation interface with the high retentive fully porous monodisperse reversed‐phase column in the second dimension resulted in higher peak capacity values (1146 versus 867), increased sensitivity, sharper and more symmetrical peaks in comparison with a conventional loop‐based method, with the same analysis time (70 min). The system was challenged against a complex polyphenolic extract of a typical Italian apple cultivar, enabling the simultaneous separation of multiple polyphenolic classes, including oligomeric procyanidins, up to degree of polymerization of 10. Hyphenation with an ion trap time‐of‐flight mass spectrometer led to the tentative identification of 121 analytes, showing how this platform could be a powerful analytical tool for the accurate profiling of complex polyphenolic samples.  相似文献   

5.
Oil samples from Recôncavo basin (NE Brazil), previously analyzed by traditional techniques such as gas chromatography coupled to tandem mass spectrometry, were evaluated using comprehensive two‐dimensional gas chromatography coupled to quadrupole mass spectrometry and comprehensive two‐dimensional gas chromatography coupled to tandem mass spectrometry along with simplified methods of samples preparation to evaluate the differences and advantages of these analytical techniques to better understand the development of the organic matter in this basin without altering the normal distribution of the compounds in the samples. As a result, the geochemical parameters calculated by comprehensive two‐dimensional gas chromatography coupled to tandem mass spectrometry described better the origin, maturity, and biodegradation of both samples probably by increased selectivity, resolution, and sensitivity inherent of the multidimensional technique. Additionally, the detection of the compounds such as, the C(14α‐) homo‐26‐nor‐17α‐hopane series, diamoretanes, nor‐spergulanes, C19–C26 A‐nor‐steranes and 4α‐methylsteranes resolved and detected by comprehensive two‐dimensional gas chromatography coupled to tandem mass spectrometry were key to classify and differentiate these lacustrine samples according to their maturity and deposition conditions.  相似文献   

6.
The leaves of Malus hupehensis have a strong antioxidant activity and are commonly consumed as a healthy tea. However, detailed information about its antioxidants is incomplete. Herein, we developed an effective strategy based on combining off‐line two‐dimensional high‐performance liquid chromatography with ultraviolet and tandem mass spectrometry detection with a 1,1′‐diphenyl‐2‐picrylhydrazyl assay to rapidly screen and identify the antioxidants from the leaves of M. hupehensis. In the orthogonal two‐dimensional liquid chromatography system, a Venusil HILIC column was used for the first dimension, while a Universil XB‐C18 column was installed in the second dimension. As a result, 32 antioxidants, including ten dihydrochalcones, two flavanones, nine flavonols, four flavones, and seven phenolic acids were tentatively identified, out of which 23 compounds, as far as we know, were isolated and characterized from the leaves of M. hupehensis for the first time. To the best of our knowledge, this is the first systematic investigation of the antioxidants from the leaves of M. hupehensis. The results indicated that the proposed method is an efficient technique to rapidly investigate antioxidants, especially for coeluted and minor compounds in a complex system.  相似文献   

7.
An online high‐pH reversed‐phase liquid chromatography× low‐pH reversed‐phase liquid chromatography tandem electrospray ionization mass spectrometry combined with pulse elution gradient in the first dimension was constructed to separate and identify alkaloids from Macleaya cordata (willd.) R. Br. The modulation was performed by using a dual second dimensional columns interface combined with a make‐up dilution pump, which is responsible for dilution and neutralization of the first dimensional effluent, and the dual second dimensional columns integrated the trapping and the separation function to reduce the second dimension system dead volume. Taking advantage of the dissociable characteristics of alkaloids, mobile phases with different pH values were applied in the first dimension (pH 9.0) and the second dimension (pH 2.6) to improve the orthogonality of two‐dimension separation. Besides, the pulse elution gradient in first dimension and second dimensional gradient were carefully optimized and much better separation was achieved compared to the separation with the traditional two‐dimensional liquid chromatography approach. Finally, mass measurement was performed for alkaloids in M. cordata (willd.) R. Br. by coupling proposed two‐dimensional liquid chromatography system with triple quadrupole mass spectrometry, and 39 alkaloids were successfully identified by comparing the obtained result with the former reported results.  相似文献   

8.
Green conversion of three‐dimensional organometallic [Ag26‐tp)]n ( 1 ) coordination polymer (CP) nanosheets, prepared by sonochemical procedure, to three‐dimensional organometallic [Ag24‐tp)(apy)2]n ( 2 ) (where H2tp = terephthalic acid and apy = 2‐aminopyridine) CP nanoparticles has been observed upon solid‐state mechanochemical reaction of compound 1 with 2‐aminopyridine. The AgO3 Ag ···C6 coordination sphere of silver ion in 1 changed to NO2 Ag ···C coordination sphere in 2 during this mechanochemical addition. These samples were characterized by infrared spectroscopy, thermogravimetric and differential thermal analyses, X‐ray powder diffraction and scanning electron microscopy.  相似文献   

9.
The performances of gas chromatography with mass spectrometry and of comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry are examined through the comparison of Daphnia magna metabolic profiles. Gas chromatography with mass spectrometry and comprehensive two‐dimensional gas chromatography with mass spectrometry were used to compare the concentration changes of metabolites under saline conditions. In this regard, a chemometric strategy based on wavelet compression and multivariate curve resolution–alternating least squares is used to compare the performances of gas chromatography with mass spectrometry and comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry for the untargeted metabolic profiling of Daphnia magna in control and salinity‐exposed samples. Examination of the results confirmed the outperformance of comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry over gas chromatography with mass spectrometry for the detection of metabolites in Dmagna samples. The peak areas of multivariate curve resolution–alternating least squares resolved elution profiles in every sample analyzed by comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry were arranged in a new data matrix that was then modeled by partial least squares discriminant analysis. The control and salt‐exposed daphnids samples were discriminated and the most relevant metabolites were estimated using variable importance in projection and selectivity ratio values. Salinity de‐regulated 18 metabolites from metabolic pathways involved in protein translation, transmembrane cell transport, carbon metabolism, secondary metabolism, glycolysis, and osmoregulation.  相似文献   

10.
Comprehensive two‐dimensional gas chromatography is a technique that is becoming more widespread within the analytical community, especially in the separation of complex mixtures. Modulation in comprehensive two‐dimensional gas chromatography can be achieved by manipulating temperature or flow and offers many advantages such as increased separation power, but one underutilized advantage is increased detectability due to the reduction of peak width from the use of a modulator. A flow modulator was used to selectively target analytes for increased detectability with a standard flame ionization detector operated at 100 Hz, without the need for cryogens or advanced modulation software. By the collection of the entire peak volume followed by peak transfer rather than further separation, an increase of 12 times in peak height and detectability was realized for the analytes tested using an internal loop modulator configuration. An external loop flow modulator configuration allowed for more volatile analytes (with k < 5), and demonstrated an analyte detectability enhancement factor of at least 6. The collection loop size can be readily increased with an external loop configuration to accommodate for these naturally broader peaks. This novel flow modulated targeted signal enhancement approach was applied to industrially significant analyses like the analysis of methanol in a hydrocarbon streams. Methanol was detected at 7 ppb with a conventional flame ionization detector and without the need for pre‐concentration.  相似文献   

11.
For the preparation of well‐defined H2O‐soluble C60 polymers, several C60‐PEG conjugates were prepared from a C60 biscarboxylic acid derivative and monodisperse NH2‐PEGs (NH2‐EGn, = 4 – 36) via amide conjugation. When the relatively long PEGs (EGn,  12) were employed, the C60‐PEG conjugates became completely H2O‐soluble by forming micelle‐like structure shown by the data of surface tension, DLS, and cryo‐TEM. Interestingly, these H2O‐soluble C60‐PEG conjugates (C60(EGn)2, = 12 – 36) showed reversible thermoresponse to form larger aggregates (ca. 1 μm by DLS) at higher temperatures. The temperature for the aggregation was related to the lengths of PEGs attached to C60; 29 °C (C60(EGn)2, = 12), 51 °C (= 20), and 72 °C (= 36). This thermoresponse was speculated to occur by dehydration of well‐organized PEG chains in the micelle‐type structure of monodisperse C60‐PEG caused by gauche‐to‐anti conformational change of PEG anchors. This thermoresponse of well‐defined amphiphilic C60‐PEG conjugates indicates potential applications in areas such as temperature sensors and thermoresponsive materials.  相似文献   

12.
Three new metal coordination complexes, namely [Co(BPY)2(H2O)2](BPY)(BS)2(H2O)4 ( 1 ), [Co(BPY)2(H2O)4](ABS)2(H2O)2 ( 2 ) and [Co(BPY)(H2O)4](MBS)2 ( 3 ) (BPY = 4,4′‐bipyridine, BS = phenylsulfonic acid, ABS = p‐aminobenzenesulfonic acid, MBS = p‐methylbenzenesulfonic acid), were obtained under hydrothermal conditions. Complexes 1 , 2 , 3 were structurally characterized using single‐crystal X‐ray diffraction and infrared spectroscopy. All of them display low‐dimensional motifs: complex 1 displays a two‐dimensional structure; and complexes 2 and 3 exhibit a one‐dimensional tape structure. Through strong intermolecular hydrogen bonding interactions and weak packing interactions, all of them further stack to generate a three‐dimensional supramolecular architecture. Catalysts 1 , 2 , 3 were involved in the green synthesis of a variety of 3,4‐dihydropyrimidin‐2(1H)‐ones under solvent‐free conditions through Biginelli reactions. The corresponding catalytic product was obtained in quantitative yields (99%) under eco‐friendly synthesis conditions for the variety of reactions. Catalysts 1 , 2 , 3 exhibit excellent efficiency for the desired product, and their catalytic performance shows the following order: 2  >  1  ≈  3 , which can be ascribed to the hydrophobic interactions of different phenylsulfonate groups. The catalytic performance for the Biginelli reaction is not only dependent on the selected solvents, but also inversely proportional to the polarities of the solvents. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, chitosan‐zinc oxide nanoparticles were used as a sorbent of miniaturized matrix solid‐phase dispersion combined with flotation‐assisted dispersive liquid–liquid microextraction for the simultaneous determination of 13 n‐alkanes such as C8H18 and C20H42 in soil samples. The solid samples were directly blended with the chitosan nanoparticles in the solid‐phase dispersion method. The eluent of solid‐phase dispersion was applied as the dispersive solvent for the following flotation‐assisted dispersive liquid–liquid microextraction for further purification and enrichment of the target compounds prior to gas chromatography with flame ionization detection. Under the optimum conditions, good linearity with correlation coefficients in the range 0.9991 < r2 < 0.9995 and low detection limits between 0.08 to 2.5 ng/g were achieved. The presented procedure combined the advantages of chitosan‐zinc oxide nanoparticles, solid‐phase dispersion and flotation‐assisted dispersive liquid–liquid microextraction, and could be applied for the determination of n‐alkanes in complicated soil samples with acceptable recoveries.  相似文献   

14.
Headspace gas chromatography is frequently used for aroma profiling thanks to its ability to naturally exploit the volatility of aroma compounds, and also to provide chemical information on sample composition. Its main advantages rely on simplicity, no use of solvent, amenability to automation, and the cleanliness of the extract. In the present contribution, the most effective sampling (dynamic extraction), separation (multidimensional gas chromatography), and detection (mass spectrometry) techniques for untargeted analysis are exploited in combination, showing their potential in unraveling aroma profiles in fruit beers. To complete the overall analytical process, a neat workflow for data analysis is discussed and used for the successful characterization and identification of five different beer flavors (berries, cherry, banana, apple, and peach). From the technical viewpoint, the coupling of purge‐and‐trap, comprehensive two‐dimensional gas chromatography, and mass spectrometry makes the global methodology unique, and it is for the first time discussed. A (low‐)flow modulation approach allowed for the full transfer into the second dimension with mass‐spectrometry compatible flow (< 7 mL/min), avoiding the need of splitting before detection and making the overall method sensitive (1.2–5.2‐fold higher signal to noise ratio compared to unmodulated gas chromatography conditions) and selective.  相似文献   

15.
The enantiomeric composition of several chiral markers in lavender essential oil was studied by flow modulated comprehensive two‐dimensional gas chromatography operated in the reverse flow mode and hyphenated to flame ionization and quadrupole mass spectrometric detection. Two capillary column series were used in this study, 2,3‐di‐O‐ethyl‐6‐Otert‐butyldimethylsilyl‐β‐cyclodextrin or 2,3,6‐tri‐O‐methyl‐β‐cyclodextrin, as the chiral column in the first dimension and α polyethylene glycol column in the second dimension. Combining the chromatographic data obtained on these column series, the enantiomeric and excess ratios for α‐pinene, β‐pinene, camphor, lavandulol, borneol, and terpinen‐4‐ol were determined. This maybe a possible route to assess the authenticity of lavender essential oil.  相似文献   

16.
Racemates of hydrophobic amino acids with linear side chains are known to undergo a unique series of solid‐state phase transitions that involve sliding of molecular bilayers upon heating or cooling. Recently, this behaviour was shown to extend also to quasiracemates of two different amino acids with opposite handedness [Görbitz & Karen (2015). J. Phys. Chem. B, 119 , 4975–4984]. Previous investigations are here extended to an l ‐2‐aminobutyric acid–d ‐methionine (1/1) co‐crystal, C4H9NO2·C5H11NO2S. The significant difference in size between the –CH2CH3 and –CH2CH2SCH3 side chains leads to extensive disorder at room temperature, which is essentially resolved after a phase transition at 229 K to an unprecedented triclinic form where all four d ‐methionine molecules in the asymmetric unit have different side‐chain conformations and all three side‐chain rotamers are used for the four partner l ‐2‐aminobutyric acid molecules.  相似文献   

17.
Air stable and easily accessible, 1‐(α‐aminobenzyl)‐2‐naphthols are used as efficient phosphine‐free ligands in palladium‐catalyzed Suzuki reaction for a variety of substrates under conventional heating as well as ultrasonic conditions. Multi‐brominated aromatic substrates were successfully converted to corresponding arylated moieties with good conversion and selectivity. A novel one‐pot two‐step cascade reaction strategy involving Wittig and Suzuki reactions is developed for efficient synthesis of 4‐styryl biphenyls (C6‐C2‐C6‐C6 unit). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
We studied the time‐of‐flight secondary ion mass spectrometry fragmentation mechanisms of polystyrenes—phenyl‐fluorinated polystyrene (5FPS), phenyl‐deuterated polystyrene (5DPS), and hydrogenated polystyrene (PS). From the positive ion spectra of 5FPS, we identified some characteristic molecular ion structures with isomeric geometries such as benzylic, benzocyclobutene, benzocyclopentene, cyclopentane, and tropylium systems. These structures were evaluated by the B3LYP‐D/jun‐cc‐pVDZ computation method. The intensities of the C7H2F5+ (m/z = 181), CyPent‐C9H3F4+ (m/z = 187), CyPent‐C9H4F5+ (m/z = 207), and CyPent‐C9H2F5+ (m/z = 205) ions were enhanced by resonance stabilization. The positive fluorinated ions from 5FPS tended to rearrange and produce fewer fluorine‐containing molecular ions through the loss of F (m/z = 19), CF (m/z = 31), and CF2 (m/z = 50) ion fragments. Consequently, the fluorine‐containing polycyclic aromatic ions had much lower intensities than their hydrocarbon counterparts. We propose the fragmentation mechanisms for the formation of C5H5+, C6H5+, and C7H7+ ion fragments, substantiated with detailed analyses of the negative ion spectra. These ions were created through elimination of a pentafluoro‐phenyl anion (C6F5) and H+, followed by a 1‐electron‐transfer process and then cyclization of the newly generated polyene with carbon‐carbon bond formation. The pendant groups with elements of different electronegativities exerted strong influences on the intensities and fragmentation processes of their corresponding ions.  相似文献   

19.
The title CdII coordination polymer, [Cd(C10H8O4)(C12H12N6)0.5(H2O)]n, has been obtained by the hydrothermal method and studied by single‐crystal X‐ray diffraction, elemental analysis, thermogravimetric analysis, IR spectroscopy and fluorescence spectroscopy. The compound forms a novel three‐dimensional framework with 3,8‐connected three‐dimensional binodal {4.52}2{42.510.612.7.83} topology. An investigation of its photoluminescence properties shows that the compound exhibits a strong fluorescence emission in the solid state at room temperature.  相似文献   

20.
Derivatives of 4‐hydroxypyrimidine are an important class of biomolecules. These compounds can undergo keto–enol tautomerization in solution, though a search of the Cambridge Structural Database shows a strong bias toward the 3H‐keto tautomer in the solid state. Recrystallization of 2‐amino‐5,6‐dimethyl‐4‐hydroxypyrimidine, C6H9N3O, from aqueous solution yielded triclinic crystals of the 1H‐keto tautomer, denoted form (I). Though not apparent in the X‐ray data, the IR spectrum suggests that small amounts of the 4‐hydroxy tautomer are also present in the crystal. Monoclinic crystals of form (II), comprised of a 1:1 ratio of both the 1H‐keto and the 3H‐keto tautomers, were obtained from aqueous solutions containing uric acid. Forms (I) and (II) exhibit one‐dimensional and three‐dimensional hydrogen‐bonding motifs, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号