首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Cell‐based assays enable monitoring of small‐molecule bioactivity in a target‐agnostic manner and help uncover new biological mechanisms. Subsequent identification and validation of the small‐molecule targets, typically employing proteomics techniques, is very challenging and limited, in particular if the targets are membrane proteins. Herein, we demonstrate that the combination of cell‐based bioactive‐compound discovery with cheminformatic target prediction may provide an efficient approach to accelerate the process and render target identification and validation more efficient. Using a cell‐based assay, we identified the pyrazolo‐imidazole smoothib as a new inhibitor of hedgehog (Hh) signaling and an antagonist of the protein smoothened (SMO) with a novel chemotype. Smoothib targets the heptahelical bundle of SMO, prevents its ciliary localization, reduces the expression of Hh target genes, and suppresses the growth of Ptch+/− medulloblastoma cells.  相似文献   

2.
3.
Reported is the identification of the furo[3,2‐b]pyridine core as a novel scaffold for potent and highly selective inhibitors of cdc‐like kinases (CLKs) and efficient modulators of the Hedgehog signaling pathway. Initially, a diverse target compound set was prepared by synthetic sequences based on chemoselective metal‐mediated couplings, including assembly of the furo[3,2‐b]pyridine scaffold by copper‐mediated oxidative cyclization. Optimization of the subseries containing 3,5‐disubstituted furo[3,2‐b]pyridines afforded potent, cell‐active, and highly selective inhibitors of CLKs. Profiling of the kinase‐inactive subset of 3,5,7‐trisubstituted furo[3,2‐b]pyridines revealed sub‐micromolar modulators of the Hedgehog pathway.  相似文献   

4.
A series of novel 4-substituted-phenoxy-benzamide derivatives bearing an aryl cycloaliphatic amine moiety were synthesized and evaluated for antiproliferative activity against SW620, HT29 and MGC803 cancer cell lines in vitro. The pharmacological data demonstrated that the majority of target compounds exhibitedmoderate efficacy in HT29 and MGC803 cell lines. Compound 10c showed promising inhibition of hedgehog (Hh) signaling pathway in an Hh-related assay. In addition, the superposition pattern of 10c showed a good fit for a pharmacophoric model generated by Hh inhibitors and provided a basis for further structural optimization.  相似文献   

5.
The aberrant hedgehog (Hh)/GLI signaling pathway causes the formation and progression of a variety of tumors. We recently constructed a cell-based screening system to search for Hh/GLI signaling inhibitors from natural resources. Using our screening system, Adenium obesum was found to include Hh/GLI signaling inhibitors from our tropical plant extract libraries. Bioassay-guided fractionation of this plant extract led to the isolation of 17 cardiac glycosides (1-17), including 3 new compounds (4, 9, 16). These compounds showed strong inhibitory activities, especially the IC(50) of 17 is 0.11 μM. The inhibition of GLI-related protein expression with 3, 9, 11, 15 and 17 was observed in human pancreatic cancer cells (PANC1), which express Hh/GLI components aberrantly. The expressions of GLI-related proteins PTCH and BCL2 were clearly inhibited. These compounds also showed selective cytotoxicity against two cancer cell lines, with less effect against normal cells (C3H10T1/2). RT-PCT examinations showed that Ptch mRNA expression by 3, 11, 15 and 17 was inhibited.  相似文献   

6.
Withanolides constitute a well-known family of plant-based alkaloids characterised by widespread biological properties, including the ability of interfering with Hedgehog (Hh) signalling pathway. Following our interest in natural products and in anticancer compounds, we report here the synthesis of a new class of Hh signalling pathway inhibitors, inspired by withaferin A, the first isolated member of withanolides. The decoration of our scaffolds was rationally supported by in silico studies, while functional evaluation revealed promising candidates, confirming once again the importance of natural products as inspiration source for the discovery of novel bioactive compounds. A stereoselective approach, based on Brown chemistry, allowed the obtainment and the functional evaluation of the enantiopure hit compounds.  相似文献   

7.
Solar ultraviolet B (UVB) radiation has been shown to induce inflammation, DNA damage, p53 mutations and alterations in signaling pathways eventually leading to skin cancer. In this study, we investigated whether fisetin reduces inflammatory responses and modulates PI3K/AKT/NFκB cell survival signaling pathways in UVB‐exposed SKH‐1 hairless mouse skin. Mice were exposed to 180 mJ cm?2 of UVB radiation on alternate days for a total of seven exposures, and fisetin (250 and 500 nmol) was applied topically after 15 min of each UVB exposure. Fisetin treatment to UVB‐exposed mice resulted in decreased hyperplasia and reduced infiltration of inflammatory cells. Fisetin treatment also reduced inflammatory mediators such as COX‐2, PGE2 as well as its receptors (EP1–EP4) and MPO activity. Furthermore, fisetin reduced the level of inflammatory cytokines TNFα, IL‐1β and IL‐6 in UVB‐exposed skin. Fisetin treatment also reduced cell proliferation markers as well as DNA damage as evidenced by increased expression of p53 and p21 proteins. Further studies revealed that fisetin inhibited UVB‐induced expression of PI3K, phosphorylation of AKT and activation of the NFκB signaling pathway in mouse skin. Overall, these data suggest that fisetin may be useful against UVB‐induced cutaneous inflammation and DNA damage.  相似文献   

8.
Hedgehog (Hh) proteins are important components of signal transduction pathways involved in animal development, and their defects are implicated in carcinogenesis. Their N-terminal domain (HhN) acts as a signaling ligand, and their C-terminal domain (HhC) performs an autocatalytic function of cleaving itself away, while adding a cholesterol moiety to HhN. HhC has two sub-domains: a hedgehog/intein (hint) domain that primarily performs the autocatalytic activity, and a sterol-recognition region (SRR) that binds to cholesterol and properly positions it with respect to HhN. The three-dimensional details of this autocatalytic mechanism remain unknown, as does the structure of the precursor Hh protein. In this study, a complete cholesterol-bound precursor form of the drosophila Hh precursor is modeled using known crystal structures of HhN and the hint domain, and a hypothesized similarity of SRR to an unrelated but similar-sized cholesterol binding protein. The restrained geometries and topology switching (RGATS) strategy is then used to predict atomic-detail pathways for the full autocatalytic reaction starting from the precursor and ending in a cholesterol-linked HhN domain and a cleaved HhC domain. The RGATS explicit solvent simulations indicate the roles of individual HhC residues in facilitating the reaction, which can be confirmed through mutational experiments. These simulations also provide plausible structural models for the N/S acyl transfer intermediate and the product states of this reaction. This study thus provides a good framework for future computational and experimental studies to develop a full structural and dynamic understanding of Hh autoprocessing. © 2019 Wiley Periodicals, Inc.  相似文献   

9.
10.

Background  

The Hedgehog signaling pathway is essential for embryogenesis and for tissue homeostasis in the adult. However, it may induce malignancies in a number of tissues when constitutively activated, and it may also have a role in other forms of normal and maladaptive growth. Cyclopamine, a naturally occurring steroidal alkaloid, specifically inhibits the Hedgehog pathway by binding directly to Smoothened, an important Hedgehog response element. To use cyclopamine as a tool to explore and/or inhibit the Hedgehog pathway in vivo, a substantial quantity is required, and as a practical matter cyclopamine has been effectively unavailable for usage in animals larger than mice.  相似文献   

11.
The lipid mediator platelet‐activating factor (PAF) and oxidized glycerophosphocholine PAF agonists produced by ultraviolet B (UVB) have been demonstrated to play a pivotal role in UVB‐mediated processes, from acute inflammation to delayed systemic immunosuppression. Recent studies have provided evidence that microvesicle particles (MVPs) are released from cells in response to various signals including stressors. Importantly, these small membrane fragments can interact with various cell types by delivering bioactive molecules. The present studies were designed to test if UVB radiation can generate MVP release from epithelial cells, and the potential role of PAF receptor (PAF‐R) signaling in this process. We demonstrate that UVB irradiation of the human keratinocyte‐derived cell line HaCaT resulted in the release of MVPs. Similarly, treatment of HaCaT cells with the PAF‐R agonist carbamoyl PAF also generated equivalent amounts of MVP release. Of note, pretreatment of HaCaT cells with antioxidants blocked MVP release from UVB but not PAF‐R agonist N‐methyl carbamyl PAF (CPAF). Importantly, UVB irradiation of the PAF‐R‐negative human epithelial cell line KB and KB transduced with functional PAF‐Rs resulted in MVP release only in PAF‐R‐positive cells. These studies demonstrate that UVB can generate MVPs in vitro and that PAF‐R signaling appears important in this process.  相似文献   

12.
The current study was set to discover selective Plasmodium falciparum phosphatidylinositol-4-OH kinase type III beta (pfPI4KB) inhibitors as potential antimalarial agents using combined structure-based and ligand-based drug discovery approach. A comparative model of pfPI4KB was first constructed and validated using molecular docking techniques. Performance of Autodock4.2 and Vina4 software in predicting the inhibitor-PI4KB binding mode and energy was assessed based on two Test Sets: Test Set I contained five ligands with resolved crystal structures with PI4KB, while Test Set II considered eleven compounds with known IC50 value towards PI4KB. The outperformance of Autodock as compared to Vina was reported, giving a correlation coefficient (R2) value of 0.87 and 0.90 for Test Set I and Test Set II, respectively. Pharmacophore-based screening was then conducted to identify drug-like molecules from ZINC database with physicochemical similarity to two potent pfPI4KB inhibitors –namely cpa and cpb. For each query inhibitor, the best 1000 hits in terms of TanimotoCombo scores were selected and subjected to molecular docking and molecular dynamics (MD) calculations. Binding energy was then estimated using molecular mechanics–generalized Born surface area (MM-GBSA) approach over 50 ns MD simulations of the inhibitor-pfPI4KB complexes. According to the calculated MM-GBSA binding energies, ZINC78988474 and ZINC20564116 were identified as potent pfPI4KB inhibitors with binding energies better than those of cpa and cpb, with ΔGbinding ≥ −34.56 kcal/mol. The inhibitor-pfPI4KB interaction and stability were examined over 50 ns MD simulation; as well the selectivity of the identified inhibitors towards pfPI4KB over PI4KB was reported.  相似文献   

13.
Eight novel Pt(II), Pd(II), Cu(II) and Zn(II) complexes with 4’‐substituted terpyridine were synthesized and characterized by elemental analysis, UV, IR, NMR, electron paramagnetic resonance, high‐resolution mass spectrometry and molar conductivity measurements. The cytotoxicity of these complexes against HL‐60, BGC‐823, KB and Bel‐7402 cell lines was evaluated by MTT assay. All the complexes displayed cytotoxicity with low IC50 values (<20 μm ) and showed selectivity. Complexes 3 , 5 , 7 and 8 exerted 9‐, 5‐, 12‐ and 7‐fold higher cytotoxicity than cisplatin against Bel‐7402 cell line. The cytotoxicity of complexes 3 , 5 , 6 , 7 and 8 was higher than that of cisplatin against BGC‐823 cell line. Complexes 3 , 7 and 8 showed similar cytotoxicity to cisplatin against KB cell line. Complex 7 exhibited higher cytotoxicity than cisplatin against HL‐60 cell line. Among these complexes, complex 7 demonstrated the highest in vitro cytotoxicity, with IC50 values of 1.62, 3.59, 2.28 and 0.63 μm against HL‐60, BGC‐823, Bel‐7402 and KB cells lines, respectively. The results suggest that the cytotoxicity of these complexes is related to the nature of the terminal group of the ligand, the metal center and the leaving groups. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The Wnt/β‐catenin signaling pathway is shown to play a significant role in the control of the survival, proliferation, and differentiation of hematopoietic cells. Studies have confirmed that aberrant activation of canonical Wnt signaling occurs in various forms of leukemia, and is crucial for chronic lymphocytic leukemia (CLL) pathogenesis. The aim of the study is to evaluate the influence of maltotriose (M3) modified fourth generation poly(propylene imine) dendrimers (PPI‐G4) on Wnt/β‐catenin pathway gene expression in CLL (MEC‐1) cells and to compare these findings with those obtained with fludarabine (FA). Microarray data analysis reveals seven of 19 Wnt/β‐catenin pathway genes whose expression changes significantly during dendrimer and FA treatment: WNT10A, WNT6 , and CDH1 among others. PPI‐G4‐M3 is already known to influence MEC‐1 cell apoptosis and proliferation. The obtained results suggest that the reduction in cell survival under the influence of glycodendrimers and FA may be due to loss of Wnt signaling.  相似文献   

15.
A series of benzoisoindolin hydrazones as analogues of natural lignan diphyllin were synthesized and the structures of these compounds were established by (1)H-NMR, (13)C-NMR, Mass and high resolution (HR)-MS. The compounds were evaluated for in vitro cytotoxicity against KB, A549 and HCT-116 cancer cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Compound 4 possessed the highest growth inhibitory effect. Significant apoptosis of HCT-116 cells treated with compound 4 was observed by Hoechst33342-propidium iodide (PI) and acridine orange (AO)-ethidium bromide (EB) staining assay. Western blot analysis disclosed that compound 4 induced apoptosis via the mitochondrial pathway accompanied by an increased expression of Bax and a decreased expression of Bcl-2.  相似文献   

16.
Small molecules that perturb developmental signaling pathways can have devastating effects on embryonic patterning, as evidenced by the chemically induced onset of cyclopic lambs and children with severely shortened limbs during the 1950s. Recent studies, however, have revealed critical roles for these pathways in human disorders and diseases, spurring the re-examination of these compounds as new targeted therapies. In this tutorial review, we describe four case studies of teratogenic compounds, including inhibitors of the Hedgehog (Hh), Wnt, and bone morphogenetic protein (BMP) pathways. We discuss how these teratogens were discovered, their mechanisms of action, their utility as molecular probes, and their potential as therapeutic agents. We also consider current challenges in the field and possible directions for future research.  相似文献   

17.
In this study, we introduced photolabile 4‐(4‐(1‐hydroxyethyl)‐2‐methoxy‐5‐nitrophenoxy)butyric acid (HMNB) to prepare photoresponsive nanogels. Hyaluronate (HA) grafted with 4‐(4‐(1‐hydroxyethyl)‐2‐methoxy‐5‐nitrophenoxy)butyric acid (HA‐g‐HMNB) was self organized in aqueous solution. Interestingly, HA‐g‐HMNB nanogels exhibited caging and photo‐uncaging properties for an encapsulated antitumor drug. Photoactivation allowed accelerated antitumor drug release from uncaged nanogels. We found a significant improvement in KB tumor‐cell‐killing efficacy when this system was associated with local light irradiation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Veratrum spp. grow throughout the world and are especially prevalent in high mountain meadows of North America. All parts of Veratrum plants have been used for the treatment of ailments including injuries, hypertension, and rheumatic pain since as far back as the 1600s. Of the 17–45 Veratrum spp., Veratrum californicum alkaloids have been proven to possess favorable medicinal properties associated with inhibition of hedgehog (Hh) pathway signaling. Aberrant Hh signaling leads to proliferation of over 20 cancers, including basal cell carcinoma, prostate and colon among others. Six of the most well-studied V. californicum alkaloids are cyclopamine (1), veratramine (2), isorubijervine (3), muldamine (4), cycloposine (5), and veratrosine (6). Recent inspection of the ethanolic extract from V. californicum root and rhizome via liquid chromatography–mass spectrometry has detected up to five additional alkaloids that are proposed to be verazine (7), etioline (8), tetrahydrojervine (9), dihydrojervine (10), 22-keto-26-aminocholesterol (11). For each alkaloid identified or proposed in V. californicum, this review surveys literature precedents for extraction methods, isolation, identification, characterization and bioactivity to guide natural product drug discovery associated with this medicinal plant.  相似文献   

19.
This paper summarizes a study of controlled migration of an antifog (AF) additive; sorbitan monooleate (SMO), from linear low density polyethylene (LLDPE) films containing a compatibilizer, LLDPE grafted maleic anhydride (LLDPE‐g‐MA). LLDPE/LLDPE‐g‐MA/SMO blends were prepared by melt compounding. Bulk and surface properties of compression molded LLDPE films containing SMO and LLDPE‐g‐MA were characterized using Fourier transform infrared spectroscopy and contact angle measurements. Thermal properties were investigated using a thermal gravimetric analyzer. Diffusion coefficient (D) was calculated, and AF properties were characterized using a “hot fog” test. Compression molded films were characterized for their morphology using high‐resolution scanning electron microscopy, and rheological properties were measured using a parallel‐plate rotational rheometer. It was found that the LLDPE/LLDPE‐g‐MA/SMO systems are characterized by a slower SMO migration rate, a lower diffusion coefficient, and lower contact angle values compared with LLDPE/SMO blends. These results are well correlated with results of a hot fog test. Morphological studies revealed a very fine dispersion of SMO in the LLDPE films, when 3 phr LLDPE‐g‐MA was combined with 1 phr SMO. Thermal analysis results show that the incorporation of 3 phr LLDPE‐g‐MA and 1 phr SMO significantly increases the decomposition temperature of the blend at T > 400°C. At high shear rates, the LLDPE blends show that the AF and the compatibilizer have a lubrication effect on LLDPE. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Singlet oxygen (1O2)-induced cytotoxicity is believed to be responsible for responses to photodynamic therapy and for apoptosis of T helper cells after UV-A treatment. Other cytotoxic oxidants, such as hydrogen peroxide and peroxynitrite have been shown to stimulate cell survival signaling pathways in addition to causing cell death. Both these oxidants stimulate the Akt/protein kinase B survival signaling pathway through activation of membrane tyrosine kinase growth factor receptors. We evaluated the ability of 1O2 to activate the Akt/protein kinase B pathway in NIH 3T3 cells and examined potential activation pathways. Exposure of fibroblasts to 1O2 elicited a strong and sustained phosphorylation of Akt, which occurred concurrently with phosphorylation of p38 kinase, a proapoptotic signal. Inhibition of phosphatidylinositol-3-OH kinase (PI3-K) completely blocked Akt phosphorylation. Significantly, cell death induced by 1O2 was enhanced by inhibition of PI3-K, suggesting that activation of Akt by 1O2 may contribute to fibroblast survival under this form of oxidative stress. 1O2 treatment did not induce phosphorylation of platelet-derived growth factor receptor (PDGFR) or activate SH-PTP2, a substrate of growth factor receptors, suggesting that PDGFR was not activated. In addition, specific inhibition of PDGFR did not affect Akt phosphorylation elicited by 1O2. Activation of neither focal adhesion kinase (FAK) nor Ras protein, both of which mediate responses to reactive oxygen species, appeared to be pathways for the 1O2-induced activation of the PI3-K-Akt survival pathway. Thus, activation of Akt by 1O2 is mediated by PI3-K and contributes to a survival response that counteracts cell death after 1O2-induced injury. However, unlike the response to other oxidants, activation of the PI3-K-Akt by 1O2 does not involve activation of growth factor receptors, FAK or Ras protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号