首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文制备了一系列 Fe-Mn/Al2O3催化剂,并在固定床上考察了其 NH3低温选择性催化还原 NO的性能.首先考察了不同 Fe负载量制备的催化剂的脱硝性能,优选出最佳的 Fe负载量;在此基础上,研究了 Mn负载量对催化剂脱硝效率的影响;最后,对优选催化剂的抗 H2O和抗 SO2性能进行了实验研究;同时,对催化剂由于 SO2所造成的失活机制进行了考察.采用 N2吸附-脱附、X射线衍射、透射电镜、能量弥散 X射线谱、程序升温还原、程序升温脱附、X射线光电子能谱、热重和傅里叶变换红外光谱等方法对催化剂进行了表征.结果表明,最佳的 Fe和 Mn负载量均为8%,所制的8Fe-8Mn/Al2O3催化剂在150°C的脱硝效率可达近99%;同时,在整个低温测试区间(90–210°C)的脱硝效率均超过了92.6%. Fe在催化剂表面主要以 Fe3+形态存在,而 Mn主要包括 Mn4+和 Mn3+; Mn的添加提高了 Fe在催化剂表面的积累,促进了催化剂比表面积增大和活性物种分散,改善了催化剂氧化还原性能和对 NH3的吸附能力.催化剂的高活性主要是由于其具有较大的比表面积、高度分散的活性物种、增加的还原特性和表面酸性、较低的结合能、较高的 Mn4+/Mn3+和增强的表面吸附氧.此外,8Fe-8Mn/Al2O3的催化性能受 H2O和 SO2影响较小,抗 H2O和 SO2能力较强.同时,反应温度对催化剂的抗硫性有重要影响,在较低的反应温度下,催化剂抗硫性更好; SO2造成催化剂活性降低主要是由于催化剂表面硫酸盐物种的生成.一方面,表面硫酸铵盐的生成造成催化剂孔道堵塞和比表面积降低,减少了反应中的气固接触从而导致活性降低;另一方面,催化剂表面的活性物种被硫酸化,造成反应中的有效活性位减少,从而降低了催化剂活性.  相似文献   

2.
Two K/Mn-MgO supported catalysts were prepared by Fe(CO)5 and Fe(NO3)3 as precursor respectively. The obtained Fe-K/Mn-MgO catalysts were tested for CO hydrogenation to light alkenes and characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectra (XPS), H2 temperature-programmed reduction (H2-TPR), H2 CO and CO2 temperature-programmed desorption (H2, CO/CO2-TPD) and transmission electron microscope (TEM) The results indicated that the catalyst with 10 wt% Fe loading prepared by Fe(CO)5 as precursor showed better performance in syngas to light alkenes than ones obtained from Fe(NO3)3 as precursor, where the CO conversion was 62.50% and the selectivity was 55.95% at 350 ℃, 1.5 MPa and 1000 h^-1, respectively.  相似文献   

3.
A series of large scale MxCo3?xO4 (M=Co, Ni, Zn) nanoarray catalysts have been cost‐effectively integrated onto large commercial cordierite monolithic substrates to greatly enhance the catalyst utilization efficiency. The monolithically integrated spinel nanoarrays exhibit tunable catalytic performance (as revealed by spectroscopy characterization and parallel first‐principles calculations) toward low‐temperature CO and CH4 oxidation by selective cation occupancy and concentration, which lead to controlled adsorption–desorption behavior and surface defect population. This provides a feasible approach for scalable fabrication and rational manipulation of metal oxide nanoarray catalysts applicable at low temperatures for various catalytic reactions.  相似文献   

4.
Two series of Co and Ni based catalysts supported over commercial (ZrO2, CeO2, and Al2O3) nano supports were investigated for dry reforming of methane. The catalytic activity of both Co and Ni based catalysts were assessed at different reaction temperatures ranging from 500—800 °C; however, for stability the time on stream experiments were conducted at 700 °C for 6 h. Various techniques such as N2 adsorption‐desorption isotherm, temperature‐programmed reduction (H2‐TPR), temperature‐programmed desorption (CO2‐TPD), temperature‐programmed oxidation (TPO), X‐ray diffraction (XRD), thermogravimetric analysis (TGA) were applied for characterization of fresh and spent catalysts. The catalytic activity and stability tests clearly showed that the performance of catalyst is strongly dependent on type of active metal and support. Furthermore, active metal particle size and Lewis basicity are key factors which have significant influence on catalytic performance. The results indicated that Ni supported over nano ZrO2 exhibited highest activity among all tested catalysts due to its unique properties including thermal stability and reducibility. The minimum carbon deposition and thus relatively stable performance was observed in case of Co‐Al catalyst, since this catalyst has shown highest Lewis basicity.  相似文献   

5.
The selective oxidation of CO in the presence of hydrogen on CuO/CeO2 systems containing Fe and Ni oxides as promoters was studied. The catalysts containing 1–5 wt % CuO and 1–2.5 wt % Fe2O3 supported on CeO2 and the CuO/CeO2 systems containing 1–2.5 wt % NiO were synthesized, and their catalytic activity as a function of temperature was determined. It was found that the additives of Fe and Ni oxides increased the activity of the CuO/CeO2 catalysts with a low concentration of CuO. In this case, the conversion of CO at 150°C approached 100%. At the same time, these additives had no effect on the activity of the CuO/CeO2 systems at a CuO concentration of 5 wt % or higher, which exhibited an initially high activity in the above temperature region. The forms of CO adsorption and the amounts of active sites for CO adsorption and oxidation were studied using temperature-programmed desorption. It was found that the introduction of Fe and Ni additives in a certain preparation procedure facilitated the formation of an additional amount of active centers associated with CuO. Data on the temperature-programmed reduction of samples (the amount of absorbed hydrogen and the maximum temperature of hydrogen absorption) suggested the interaction of all catalyst components, and the magnitude of this interaction depended on the sample preparation procedure. With the use of Mössbauer spectroscopy, it was found that the procedure of iron oxide introduction into the CuO/CeO2 system was responsible for the electron-ion interactions of catalyst components and the reaction mixture.  相似文献   

6.
The nickel‐promoted Cu‐containing catalysts (CuxNiy‐MgAlO) for furfural (FFR) hydrogenation were prepared from the hydrotalcite‐like precursors, and characterized by X‐ray powder diffraction, inductively‐coupled plasma atomic emission spectroscopy, N2 adsorption‐desorption, UV‐Vis diffuse reflectance spectra and temperature‐programmed reduction with H2 in the present work. The obtained catalysts were observed to exhibit a better catalytic property than the corresponding Cu‐MgAlO or Ni‐MgAlO samples in FFR hydrogenation, and the CuNi‐MgAlO catalyst with the actual Cu and Ni loadings of 12.5 wt% and 4.5 wt%, respectively, could give the highest FFR conversion (93.2%) and furfuryl alcohol selectivity (89.2%). At the same time, Cu0 species from the reduction of Cu2+ ions in spinel phases were deduced to be more active for FFR hydrogenation.  相似文献   

7.
A series of large scale MxCo3−xO4 (M=Co, Ni, Zn) nanoarray catalysts have been cost‐effectively integrated onto large commercial cordierite monolithic substrates to greatly enhance the catalyst utilization efficiency. The monolithically integrated spinel nanoarrays exhibit tunable catalytic performance (as revealed by spectroscopy characterization and parallel first‐principles calculations) toward low‐temperature CO and CH4 oxidation by selective cation occupancy and concentration, which lead to controlled adsorption–desorption behavior and surface defect population. This provides a feasible approach for scalable fabrication and rational manipulation of metal oxide nanoarray catalysts applicable at low temperatures for various catalytic reactions.  相似文献   

8.
Titanium silicalite (TS) and TiO2 nanocomposites were prepared by mixing TS and TiO2 with different ratios in ethanol. They were impregnated with 15 wt% Co loading to afford Co‐based catalysts. Fischer–Tropsch synthesis (FTS) performance of these TS–TiO2 nanocomposite‐supported Co‐based catalysts was studied in a fixed‐bed tubular reactor. The results reveal that the Co/TS–TiO2 catalysts have better catalytic performance than Co/TS or Co/TiO2 each with a single support, showing the synergistic effect of the binary TS–TiO2 support. Among the TS–TiO2 nanocomposite‐supported Co‐based catalysts, Co/TS–TiO2‐1 presents the highest activity. These catalysts were characterized using N2 adsorption–desorption measurements, X‐ray diffraction, X‐ray photoelectron spectroscopy, H2 temperature‐programmed reduction, H2 temperature‐programmed desorption and transmission electron microscopy. It was found that the position of the active component has a significant effect on the catalytic activity. In the TS–TiO2 nanocomposites, cobalt oxides located at the new pores developed between TS and TiO2 can exhibit better catalytic activity. Also, a positive relationship is observed between Co dispersion and FTS catalytic performance for all catalysts. The catalytic activity is improved on increasing the dispersion of Co.  相似文献   

9.
采用柠檬酸法制备了Ca,Sr共掺杂的CeO_2催化剂,发现共掺杂催化剂较单掺杂或未掺杂催化剂呈现出更好的催化甲烷氧化偶联(OCM)反应性能.通过表征可知,Ca,Sr共掺杂催化剂的物相为CeO_2和SrCO_3,Ca高度分散或掺杂于CeO_2之中;CeO_2的粒径明显变小;表面呈中等程度碱性;Ce基催化剂上的亲电氧物种数量随着碱土金属的掺杂而增大,亲电氧物种与晶格氧摩尔比(O_2-2+O-2)/O-2的大小顺序(CeSrCaCe SrCeO_2)与C2选择性一致;且SrCO_3相的存在有助于Ce基氧化物催化甲烷氧化偶联反应(OCM)性能的改善.  相似文献   

10.
Highly ordered mesoporous cobalt-copper composite oxides were prepared by the nanocasting method with various Co and Cu ratios. The catalysts obtained were characterized by X-ray diffraction, N2 adsorption–desorption, H2-temperature programmed reduction, CO-temperature programmed desorption and X-ray photoelectron spectroscopy. All of the catalysts had uniform mesopores and high surface areas. The distinct catalytic properties of these well-characterized mesoporous materials were demonstrated for preferential CO oxidation. It is found that the mesoporous cobalt-copper composite oxides, exhibited the higher catalytic activity for CO conversion and selectivity compared with the mesoporous Co3O4 and mesoporous CuO. Among these catalysts the mesoporous cobalt-copper catalyst with Co:Cu molar ratio of 70:30, shows the best catalytic activity and the broadest operating temperature “window” for the high CO conversion in the range of 125–200oC. The higher catalytic activity was attributed to the higher CO adsorption and oxygen vacancies.  相似文献   

11.
We have been exploring the utilization of a simple and fast microwave-induced solution combustion synthesis technique for the preparation of various ceria-based mixed oxides for different catalytic applications. In our comprehensive investigation, CeO2–SiO2 (MWCS), CeO2–TiO2 (MWCT), CeO2–ZrO2 (MWCZ) and CeO2–Al2O3 (MWCA) mixed oxides were synthesized by solution combustion synthesis method using microwave dielectric heating and employed for CO and soot oxidation applications. The intricate relationship between ceria and other supporting oxides has been explored with the help of various analytical techniques namely, X-ray diffraction (XRD), temperature programmed reduction/oxidation (TPR/TPO), temperature programmed desorption (TPD) of ammonia and CO2, Raman spectroscopy (RS), UV–vis diffuse reflectance spectroscopy (UV–vis DRS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), BET surface area and thermogravimetry analysis (TGA) methods. XRD results revealed amorphous nature of the material in case of ceria-silica mixed oxide and formation of a specific cubic fluorite type Ce0.5Zr0.5O2 solid solution in the case of ceria-zirconia mixed oxide. Ceria-titania and ceria-alumina mixed oxides exhibited diffraction lines only due to crystalline ceria. Zirconia-based mixed oxide exhibited a lower reduction temperature and better redox properties compared to other samples. TPD of ammonia and CO2 results revealed superior acid–base properties for MWCS mixed oxide. TGA measurements indicated a complete combustion in all preparations. RS results suggested defective structure of mixed oxides resulting in the formation of oxygen vacancies. XPS results revealed that ceria-zirconia mixed oxide contained more Ce3+ compared to other oxides. Among all the mixed oxides, the MWCZ sample exhibited a higher oxygen storage capacity, and better CO and soot oxidation activities. All these interesting findings have been elaborated in this publication.  相似文献   

12.
Polynary single‐atom structures can combine the advantages of homogeneous and heterogeneous catalysts while providing synergistic functions based on different molecules and their interfaces. However, the fabrication and identification of such an active‐site prototype remain elusive. Here we report isolated diatomic Ni‐Fe sites anchored on nitrogenated carbon as an efficient electrocatalyst for CO2 reduction. The catalyst exhibits high selectivity with CO Faradaic efficiency above 90 % over a wide potential range from ?0.5 to ?0.9 V (98 % at ?0.7 V), and robust durability, retaining 99 % of its initial selectivity after 30 hours of electrolysis. Density functional theory studies reveal that the neighboring Ni‐Fe centers not only function in synergy to decrease the reaction barrier for the formation of COOH* and desorption of CO, but also undergo distinct structural evolution into a CO‐adsorbed moiety upon CO2 uptake.  相似文献   

13.
Hydrogenation of acetophenone over nano‐Cu/SiO2 catalysts was investigated. The catalysts, prepared by a liquid precipitation method using various precipitating agents, were characterized using low‐temperature nitrogen adsorption, X‐ray diffraction, temperature‐programmed desorption of ammonia, hydrogen temperature‐programmed reduction, transmission electron microscopy and X‐ray photoelectron spectroscopy. It was found that the catalysts prepared by a homogeneous precipitation method had better activity and stability than those prepared by a co‐precipitation method. The catalyst prepared using urea as precipitating agent had well‐dispersed copper species, high surface area and abundant pore structure. The catalytic performance and mechanism of the Cu/SiO2 catalysts were further studied. It was found that the activity and stability of the catalysts could be improved by adjusting the proportion of Cu+/(Cu+ + Cu0). The sample prepared using urea as precipitating agent presented higher activity and selectivity. Also, the catalyst prepared using urea maintained a high catalytic performance while being continuously used for 150 h under the optimal reaction conditions.  相似文献   

14.
汽车尾气中主要污染成分 CO和 NOx可导致酸雨、光化学烟雾和臭氧空洞效应,对生物、环境及生态系统造成重大危害。污染源中 CO是性能优良的还原剂,如能不添加还原剂实现 CO催化还原 NOx,将成为最具经济技术优势的 NOx脱除技术。在富氧、低温条件下,利用 CO选择性催化还原 NOx为 N2,是目前选择性催化还原研究中的热点和难点。催化 CO还原 NOx常用的贵金属 Ir, Rh, Pt和Pd矿藏稀少,价格昂贵,有氧条件下活性急降,而分子筛催化剂和一些金属氧化物催化剂普遍存在反应温度高,尤其对 N2选择性差等问题。为解决上述问题,需寻找新的适合我国矿产资源的催化体系。研究发现,稀散金属基催化剂对氮氧化物的净化具有一定效果,因而可将我国的稀散金属资源优势转化为技术优势和经济优势。因此,本文以 TiO2-γ-Al2O3(TA)为载体, In/Ag为活性组分,采用等体积浸渍法制备了 InAg/TA以及 In/TA, Ag/TA和InAg/Al (γ-Al2O3为载体)催化剂,考察了贫燃条件下 CO选择性还原NO的催化活性。研究表明,双金属催化剂InAg/Al和 InAg/TA的活性比单金属催化剂In/TA和 Ag/TA高, In/TA催化剂中引入 Ag物种能降低起燃温度;另外,相比于InAg/Al催化剂, InAg/TA催化剂具有较高的催化活性,550?600°C时 N2产率超过60%,说明载体中引入TiO2可以提高催化剂活性。为了深入研究 InAg/TA催化剂中 Ag物种和TiO2对 In物种的作用,通过比表面测定、X射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱、紫外-可见光吸收光谱、氢气程序升温还原、傅立叶变换红外线光谱等方法分析了催化剂结构和表面形态。结果表明, Ag物种可以提高 In物种的分散性, In和 Ag物种在 TA载体表面可以很好地分散,从而有利于提高催化活性。 In和 Ag物种在 TA载体表面以氧化态形式存在,并且 Ag物种可以提高 In物种表面含量,表面 In和 Ag物种含量越高,吸附活性位越多,催化活性越高;同时, TiO2也可以促进 NO吸附,从而提高 InAg/TA催化剂活性。 InAg/TA催化剂在450°C连续反应72 h进行稳定性测试,测试前后分别在50?600°C进行活性测试,并用 XRD和 TEM对反应后的催化剂进行表征测试。结果表明, InAg/TA催化剂具有较好的稳定性,连续反应前后催化剂活性基本保持不变,推测可能由于在有 CO和O2存在的体系中, Ag物种利用自身 Ag+与 Ag0之间的氧化还原反应抑制了活性组分 In2O3的还原和聚集,稳定了 In物种乃至催化剂活性。 InAg/TA催化剂用于贫燃条件下CO还原NO具有较好的催化效果,主要归因于催化剂活性组分分散性好,稳定性高,对NO吸附能力强。 Ag物种可以稳定In物种并提高其分散性, TiO2可以改善In物种和Ag物种的分散性并促进NO吸附。  相似文献   

15.
采用浸渍法制备了不同Fe含量的13X分子筛负载的Fe催化剂(Fe/X13),运用N_2吸附-脱附法测得其BET比表面积和BJH孔径分布,采用X射线衍射、扫描电镜、程序升温还原和NH_3程序升温脱附法表征了该催化剂的织构性质.在固定床流动反应器中,以空气为氧化剂、在100-400℃范围内考察了Fe/X13催化剂上1,4-二氧六环的完全氧化反应性能,研究了反应温度、金属担载量和气体空速(GHSV)等条件对催化氧化降解二氧六环反应性能的影响,并在400℃测定了该催化剂反应50h的稳定性,结果表明,6 wt%Fe/13X催化剂表现出最高的催化性能,在400℃,GHSV=24000 h~(-1)的条件下,二氧六环转化率为97%,生成CO和CO_2的选择性达95%,降解产物还包括少量的乙醛、乙二醇-甲酸酯、乙二醇二甲酸、1,4-二氧六环-2醇、1,4-二氧六环-2酮及2-甲氧基1,3二氧戊环.基于这些经色谱-质谱联用仪检测出的产物,提出了可能的1,4-二氧六环降解机理。  相似文献   

16.
应用XRD、XPS、Mossbauer谱、TPR、CO-TPD、CO+H2反应性能测量试等手段研究了CeO2对F-T合成制低碳烯烃Ce-Fe/ZrO2催化剂催化性能的影响。结果表明,与Fe/Zr催化剂相比,加铈助剂后的催化剂F-T反应催化活性明显上升。  相似文献   

17.
Ceria–zirconia mixed oxide was successfully synthesized via the sol–gel process at ambient temperature, followed by calcination at 500, 700 and 900 °C. The synthesis parameters, such as alkoxide concentration, aging time and heating temperature, were studied to obtain the most uniform and remarkably high‐surface‐area cubic‐phase mixed oxides. The thermal stability of both oxides was enhanced by mutual substitution. Surface areas of the CexZr1?xO2 powders were improved by increasing ceria content, and their thermal stability was increased by the incorporation of ZrO2. The most stable cubic‐phase solid solutions were obtained in the Ce range above 50 mol%. The highest surface area was obtained from the mixed catalyst containing a ceria content of 90 mol% (200 m2/g). Temperature programmed reduction results show that increasing the amount of Zr in the mixed oxides results in a decrease in the reduction temperature, and that the splitting of the support reduction process into two peaks depends on CeO2 content. The CO oxidation activity of samples was found to be related to its composition. The activity of catalysts for this reaction decreased with a decrease in Zr amount in cubic phase catalysts. Ce6Zr4O2 exhibited the highest activity for CO oxidation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Pd/YZ-Al2O3 (Y and Zr modified Al2O3, and hereafter, labelled as Al) catalysts with 4 wt% additive CeO2 and/or La2O3 were prepared and characterized by X-ray photoelectron spectroscopy (XPS), NO-temperature programmed desorption (NO-TPD), N2-adsorption/desorption (Brunauer-Emmet-Teller BET method), X-ray diffraction (XRD) and CO-chemisorption. Catalytic activities for CH4, CO and NO conversion were tested in a gas mixture simulated the emissions from natural gas vehicles (NGVs) operated under stoichiometric conditions. The results indicated that all catalysts exhibited excellent catalytic performances for CH4 and CO oxidation and the promoting effect of CeO2 or La2O3 was significant for NO conversion. XPS results showed that the electron density around Pd was increased by CeO2 and/or La2O3, the binding energy of Pd 3d decreased as the order: Pd/Al>Pd/Ce/Al>Pd/La/Al>Pd/CeLa/Al. The electron-rich Pd showed Rh-like catalytic properties which exhibited good activity for the reduction of NO. NO-TPD results showed that the addition of CeO2 and/or La2O3 increased NO adsorption on surface, and promoted the conversion of NO.  相似文献   

19.
Palygorskite (PG)-supported manganese oxide catalysts (MnOx/PG) were prepared for the selective catalytic reduction (SCR) of NO with ammonia in the presence of SO2 at low temperature. The influence of gaseous SO2 on the performance of the catalyst was studied by means of specific surface area (Brunauer-Emmett-Teller, BET) analysis, scanning electron microscopy (SEM), thermogravimetric (TG) analysis, temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). The results showed that the SCR activity of Mn10/PG was significantly inhibited by gaseous SO2 at temperatures below 300°C. However, the SCR activity of Mn10/PG was markedly promoted by SO2 in a higher temperature range of 300°C to 500°C. The sulphating of surface active species (MnOx) was suggested to inhibit the oxidation of NH3 to NO leading to enhancement of the SCR activity at a higher temperature range of 300°C to 500°C and decrease in the SCR activity at temperatures below 300°C.  相似文献   

20.
The effect of manganese on the dispersion, reduction behavior and active states of surface of supported copper oxide catalysts have been investigated by XRD, temperature‐programmed reduction and XPS. The activity of methanol synthesis from CO2/H2 was also investigated. The catalytic activity over CuO‐MnOx/γ‐Al2O3 catalyst for CO2 hydrogenation is higher than that of CuO/γ‐Al2O3. The adding of manganese is beneficial in enhancing the dispersion of the supported copper oxide and make the TPR peak of the CuO‐MnKx/γ‐Al2O3 catalyst different from the individual supported copper and manganese oxide catalysts, which indicates that there exists strong interaction between the copper and manganese oxide. For the CuO/γ‐Al2O3 catalyst there are two reducible copper oxide species; α and β peaks are attributed to the reduction of highly dispersed copper oxide species and bulk CuO species, respectively. For the CuO‐MnOx/γ‐Al2O3 catalyst, four reduction peaks are observed, α peak is attributed to the dispersed copper oxide species; β peak is ascribed to the bulk CuO; γ peak is attributed to the reduction of high dispersed CuO interacting with manganese; δ peak may be the reduction of the manganese oxide interacting with copper oxide. XPS results show that Cu+ mostly existed on the working surface of the Cu‐Mn/γ‐Al2O3 catalysts. The activity was promoted by Cu with positive charge which was formed by means of long path exchange function between Cu? O? Mn. These results indicate that there is synergistic interaction between the copper and manganese oxide, which is responsible for the high activity of CO2 hydrogenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号