首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Branched chain amino acids (BCAAs), alanine and glutamine are determined in human plasma by capillary electrophoresis with contactless conductivity detection (CE/C4D). The baseline separation of five amino acids from other plasma components is achieved on the short capillary effective length of 18 cm in 3.2 mol/L acetic acid with addition of 13% v/v methanol as background electrolyte. Migration times range from 2.01 min for valine to 2.84 min for glutamine, and LODs for untreated plasma are in the interval 0.7–0.9 μmol/L. Sample treatment is based on the addition of acetonitrile to only 15 μL of plasma and supernatant is directly subjected to CE/C4D. Circulating amino acids are measured in patients with pancreatic cancer and cancer cachexia during oral glucose tolerance test. It is shown that patients with pancreatic cancer and cancer cachexia syndrome exhibit low basal circulating BCAAs and glutamine levels and loss of their insulin-dependent suppression.  相似文献   

2.
An anti-ketamine molecularly imprinted polymer (MIP) was synthesized and used as the sorbent in a solid-phase extraction protocol to isolate ketamine and norketamine from human hair extracts prior to LC-MS/MS analysis. Under optimised conditions, the MIP was capable of selectively rebinding ketamine, a licensed anaesthetic that is widely misused as a recreational drug, with an apparent binding capacity of 0.13 μg ketamine per mg polymer. The limit of detection (LOD) and lower limit of quantification (LLOQ) for both ketamine and norketamine were 0.1 ng/mg hair and 0.2 ng/mg hair, respectively, when 10 mg hair were analysed. The method was linear from 0.1 to 10 ng/mg hair, with correlation coefficients (R 2) of better than 0.99 for both ketamine and norketamine. Recoveries from hair samples spiked with ketamine and norketamine at a concentration of 50 ng/mg were 86% and 88%, respectively. The method showed good intra- and interday precisions (<5%) for both analytes. Minimal matrix effects were observed during the LC-MS/MS analysis of ketamine (ion suppression −6.8%) and norketamine (ion enhancement +0.2%). Results for forensic case samples demonstrated that the method successfully detected ketamine and norketamine concentrations in hair samples with analyte concentrations ranging from 0.2 to 5.7 ng/mg and from 0.1 to 1.2 ng/mg, respectively.  相似文献   

3.
A liquid chromatography/atmospheric pressure ionization mass spectrometry has been developed for the determination of ketamine, norketamine, and dehydronorketamine in human urine. A separation of these analytes in urine samples without tedious pretreatment procedures has been achieved within 10 min. Linear calibration curves of these analytes with coefficients better than 0.998 have been obtained over a wide range from 12.5 to 200 ng/mL. The accuracy was between 2.1% and 7.2% with detection limits at levels of 0.02 ng/mL, 0.02 ng/mL and 0.93 ng/mL for ketamine, norketamine and dehydronorketamine, respectively. The results demonstrate the suitability of the liquid chromatography/atmospheric pressure ionization mass spectrometry approach to analyze trace ketamine, norketamine and dehydronorketamine in urine. Urinary ketamine and norketamine levels were relatively low at 4–24 h intervals and were difficult to assay in a normal laboratory. In the present study, the determination of urinary dehydronorketamine levels at 2–24 hours appears to have a great potential for use in Schedule III controlled drugs management.  相似文献   

4.
This paper describes a fully automated on-line method combining in-tube solid-phase microextraction (SPME) in which sample clean-up and enrichment are conducted through an open tubular fused-silica capillary column and high-performance liquid chromatography (HPLC)/tandem mass spectrometry (MS/MS) detection for the determination of six butyrophenone derivatives (moperone, floropipamide, haloperidol, spiroperidol, bromperidol, and pimozide) in human plasma samples. The six butyrophenones were extracted by repeatedly aspirating and dispensing plasma sample solutions on a DB-17 capillary column (60 cm × 0.32 mm i.d., film thickness 0.25 μm). The analytes retained on the inner surface of the capillary column were then eluted into an acetonitrile-rich mobile phase using a gradient separation technique. Extraction efficiencies ranged from 12.7% to 31.8% for moperone, spiroperidol, and pimozide, and from 1.08% to 4.86% for floropipamide, haloperidol, and bromperidol. The regression equations for all compounds showed excellent linearity, ranging from 0.05 to 50 ng/0.1 mL of plasma, except for moperone and spiroperidol (0.01 to 50 ng/0.1 mL). The limits of detection and quantification in plasma for each drug were 0.03–0.2 and 0.1–0.5 ng/mL, respectively. The intra- and inter-day coefficients of variation for all compounds in plasma were not greater than 13.7%.  相似文献   

5.
A selective and sensitive liquid chromatography tandem mass spectrometry method was developed for the simultaneous determination of salviaflaside and rosmarinic acid in rat plasma. Sample preparation was carried out through liquid–liquid extraction with ethyl acetate using curculigoside as internal standard (IS). The analytes were determined by selected reaction monitoring operated in the positive ESI mode. Chromatographic separation was performed on an Agilent Eclipse Plus C18 column (100 × 4.6 mm, 1.8 μm) with a mobile phase consisting of methanol–water–formic acid (50:50:0.1, v/v/v) at a flow rate of 0.3 mL/min. The run time was 1.9 min per sample and the injection volume was 5 μL. The method had an LLOQ of 1.6 ng/mL for salviaflaside and 0.94 ng/mL for rosmarinic acid in plasma. The linear calibration curves were fitted over the range of 1.6–320 ng/mL for salviaflaside and 0.94–188 ng/mL for rosmarinic acid in plasma with correlation coefficients (r2) >0.99. Intra‐ and inter‐day precisions (relative standard deviation) were < 13.5%, and accuracies (relative error) were between −8.6% and 14.5% for all quality control samples. The method was validated and applied to the pharmacokinetics of salviaflaside and rosmarinic acid in plasma after oral administration of Prunella vulgaris extract to rats.  相似文献   

6.
We present a very simple electrospray unit, a capillary spray cell, for easy analysis of small (10–50 μL) sample aliquots. The sample, e.g., an unfiltered extract, is injected to a small sample cell, made of alumina and containing a short fused silica capillary mounted in its side. By the application of a 5 kV potential between the sample cell and the entrance orifice of a mass spectrometer with an atmospheric pressure interface, the sample is dragged out of the cell at a rate of a few μL/min and an electrospray is generated at the tip of the silica capillary. The capillary spray cell benefits from a high internal diameter (up to 250 μm) and very easy and inexpensive replacement of the capillary, which makes the sprayer well suited for analysis of unfiltered extracts. We demonstrate the direct analysis of extracts from plants and insects. In quantitative measurements using internal standards, a relatively high sensitivity (low ng/mL) is obtained together with good linearity (R2 = 0.998) in the range of 10–1000 ng/mL. The capillary spray cell is also suited for use with field portable mass spectrometers, since no syringe pump or nebulizer gas is needed. Furthermore, the capillary spray cell is easily manufactured by most mechanical workshops.  相似文献   

7.
A capillary liquid chromatography with UV detection (CLC-UV) system has been developed for determining platinum-based antitumor drugs (e.g., cisplatin, carboplatin, and nedaplatin) in plasma based on the pre-column derivatization of platinum with N,N-diethyl dithiocarbamate (DDTC). The chelated platinum separation was carried out on a capillary column (Inertsil ODS-3, 150 mm × 0.3 mm i.d., 3 μm) using an acetonitrile-water mixture (8:2, v/v) as a mobile phase that flowed at 5.0 μL/min. Detection was carried out by absorbance at 254 nm. Chromatographic peak height was found to be linearly related to the spiked concentration of nedaplatin in the blank control plasma from 5.0 ng/mL to 15 μg/mL (r(2)>0.998). The repeatability (n=5) of the chromatographic peak height for 2.5 μg/mL nedaplatin was 2.6% relative standard deviation (R.S.D.). The CLC-UV system, which required only 20 μL of plasma sample, was applied to the determination of total and free form platinum-based antitumor drugs in plasma after injection into rats. The recovery rates (n=5) of total and free form nedaplatin in plasma were 98% and 99%, respectively, and these repeatability were 2.4% R.S.D. and 3.1% R.S.D., respectively. In addition, the recovery rates (n=5) of total and free form carboplatin in plasma were 99% and 99%, respectively, and these repeatability were 2.9% R.S.D. and 0.24% R.S.D., respectively. The concentration-time profiles of total and free form nedaplatin in rat plasma were monitored to determine the pharmacokinetic parameters.  相似文献   

8.
We have investigated a rapid, simple, and highly efficient on-line preconcentration method using in micellar electrokinetic chromatography (MEKC) for the analysis of abused drugs. Ketamine is an anesthetic that has been abused as a hallucinogen. We applied the sample sweeping technique first to ketamine and its major metabolite, norketamine, and separated the analytes with MEKC. Several of the sweeping MEKC parameters to effect successful separations, such as the concentration of sodium dodecyl sulfate (SDS), the injection time, and the applied voltage were optimized. The improvements in the number of theoretical plates under the different separation conditions are presented clearly in a three-dimensional representation. The limits of detection were 2.8, 3.4, and 3.3 ng/mL for ketamine, norketamine, and ketamine-D(4), respectively. The enrichment factor for each compound was within the range of 540-800. Experimental results are in agreement with those of analysis conducted by gas chromatography/mass spectroscopy (GC/MS). Therefore, we believe that sweeping, combined with MEKC, represents a suitable complementary method to GC/MS for use in clinical and forensic analyses of ketamine and norketamine.  相似文献   

9.
A simple, rapid, selective, accurate and precise method is described for the determination of risperidone and its active metabolite, 9‐hydroxyrisperidone, in plasma using a chemical derivative of risperidone (methyl‐risperidone) as the internal standard. The sample workup involved a single‐step extraction of 1 mL plasma, buffered to pH 10, with heptane–isoamyl alcohol (98:2 v/v), then evaporation of the heptane phase and reconstitution of the residue in mobile phase. HPLC separation was carried out at on C18 column using a mobile phase of 0.05 m dipotassium hydrogen orthophosphate (containing 0.3% v/v triethylamine) adjusted to pH 3.7 with orthophosphoric acid (700 mL), and acetonitrile (300 mL). Flow rate was 0.6 mL/min and the detection wavelength was 280 nm. Retention times were 2.6, 3.7 and 5.8 min for 9‐hydroxy risperidone, risperidone and the internal standard, respectively. Linearity in spiked plasma was demonstrated from 2 to 100 ng/mL for both risperidone and 9‐hydroxyrisperidone (r ≥ 0.999). Total imprecision was less than 13% (determined as co‐efficient of variation) and the inaccuracy was less than 12% at spiked concentrations of 5 and 80 ng/mL. The limit of detection, determined as three times the baseline noise, was 1.5 ng/mL. Clinical application of the assay was demonstrated for analysis of post‐dose (0.55–4.0 mg/day) samples from 28 paediatric patients (aged 6.9–17.9 years) who were taking risperidone orally for behavioural and emotional disorders. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A bioanalytical method for the quantification of rosiglitazone in rat plasma and tissues (adipose tissue, heart, brain, bone, and kidney) using LC–MS/MS was developed and validated. Chromatographic separation was achieved on a Gemini C18 column (50 × 4.6 mm, 3 μm) using a mobile phase consisting of 10 mM ammonium formate (pH 4.0) and acetonitrile (10:90, v/v) at a flow rate of 0.8 mL/min and injection volume of 10 μL (internal standard: pioglitazone). LC–MS detection was performed with multiple reaction monitoring mode using target ions at m/z → 358.0 and m/z → 357.67 for rosiglitazone and pioglitazone (internal standard), respectively. The calibration curve showed a good correlation coefficient (r2) over the concentration range of 1–10,000 ng/mL. The mean percentage recoveries of rosiglitazone were found to be over the range of 92.54–96.64%, with detection and lower quantification limit of 0.6 and 1.0 ng/mL, respectively. The developed method was validated per U.S. Food and Drug Administration guidelines and successfully utilized to measure rosiglitazone in plasma and tissue samples. Further, the developed method can be utilized for validating specific organ-targeting delivery systems of rosiglitazone in addition to conventional dosage forms.  相似文献   

11.
A simple and sensitive analytical method for four isomers of glycopyrrolate in rat plasma was developed using cation‐selective exhaustive injection‐sweeping cyclodextrin‐modified electrokinetic chromatography (CSEI‐Sweeping‐CDEKC) for online enrichment combined with dispersive micro‐solid‐phase extraction pretreatment. The CSEI‐Sweeping‐CDEKC was conducted on an uncoated fused silica capillary (40.2 cm × 75 μm) with an applied voltage of –20 kV. The electrophoretic analysis was carried out in 30 mM phosphate solution at pH 2.0 containing 20 mg/mL sulfated‐β‐cyclodextrin and 5% acetonitrile. Under these optimized conditions, the detection limit for racemic glycopyrrolate was found to be 2.0 ng/mL and this method could increase 495‐fold detection sensitivity compared with the traditional injection method. Additionally, the parameters that affected the extraction efficiency of dispersive micro‐solid‐phase extraction were also examined systematically. The glycopyrrolate isomers in rat plasma samples as low as 0.0625 μg/mL were able to be separated and detected by capillary electrophoresis with the aid of CSEI‐sweeping. The findings of this study show that the dispersive micro‐solid‐phase extraction pretreatment coupled with CSEI‐Sweeping‐CDEKC is a rapid and convenient method for analyzing glycopyrrolate isomers in rat plasma.  相似文献   

12.
Paracetamol is an active ingredient commonly found in pharmaceutical formulations in combination with one of the following compounds: codeine, orphenadrine, promethazine, scopolamine, and tramadol. In this work, we propose a unique analytical method for determination of these active ingredients in pharmaceutical samples. The method is based on capillary electrophoresis with capacitively coupled contactless conductivity detection. The separation was achieved on a fused silica capillary (50 cm total length, 40 cm effective length, and 50 μm id) using an optimized background electrolyte composed of 20 mmol/L β‐alanine/4 mmol/L sodium chloride/4 μmol/L sodium hydroxide (pH 9.6). Each sample can be analyzed in a single run (≤2 min) and the limits of detection were 2.5, 0.62, 0.63, 2.5, 15, and 1.6 μmol/L for scopolamine, tramadol, orphenadrine, promethazine, codeine, and paracetamol, respectively. Recovery values for spiked samples were between 94 and 104%.  相似文献   

13.
CE method for the baseline separation of structurally similar flavonolignans silybin A, silybin B, isosilybin A, isosilybin B, silychristin, silydianin, and their precursor taxifolin in silymarin complex has been developed and validated. The optimized background electrolyte was 100 mmol/L boric acid (pH 9.0) containing 5 mmol/L heptakis(2,3,6-tri-O-methyl)-β-CD and 10% (v/v) of methanol. The separation was carried out in an 80.5/72 cm (50 μm id) fused silica capillary at +25 kV with UV detection at 200 nm. Genistein (10 μg/mL) was used as internal standard. The resolution between the diastereomers of silybin and isosilybin was 1.73 and 2.59, respectively. The method was validated for each analyte in a concentration range of 2.5–50 μg/mL. The calibration curves were rectilinear with correlation coefficients ≥0.9972. The method was applied to determine flavonolignans in two dietary supplements containing Silybum marianum extract. The accuracy was evaluated by comparing the results of the CE analyses of the dietary supplements with those of the reference United States Pharmacopeial HPLC method. The unpaired t-test did not show a statistically significant difference between the results of both the proposed CE and the reference method (p > 0.05, n = 3).  相似文献   

14.
A simple and sensitive stability-indicating chiral HPLC method has been developed and validated per International Conference on Harmonization guidelines for the determination of enantiomeric purity of eluxadoline (Exdl). The impact of different mobile phase compositions and chiral stationary phases on the separation of Exdl enantiomer along with process- and degradation-related impurities has been studied. Homogeneity of Exdl and stable results of Exdl enantiomer in all degraded samples reveal the fact that the proposed method was specific (stability indicating). Amylose tris(3,5-dichlorophenyl carbamate) stationary phase column Chiralpak IE-3 (150 × 4.6 mm, 3 μm) provided better resolution with polar organic solvents than cellulose derivative, crown ether, and zwitterion stationary phases and nonpolar solvents. The mobile phase consisted of acetonitrile, tetrahydrofuran, methanol, butylamine, and acetic acid in the ratio of 500:500:20:2:1.5 (v/v/v/v/v). Isocratic elution was performed at a flow rate of 1.0 mL/min, column temperature of 35°C, injection volume of 10 μL, and UV detection of 240 nm. The United States Pharmacopeia (USP) resolution of the Exdl enantiomer was found to be more than 4.0 within a 65-min run time. Exdl enantiomer detector response linearity over the concentration range of 0.859–4.524 μg/mL was found to be R2 = 0.9985. The limit of detection, limit of quantification, and average percentage recovery values were established as 0.283 μg/mL, 0.859 μg/mL, and 96.0, respectively.  相似文献   

15.
Fritless SPE on‐line coupled to CE with UV and MS detection (SPE‐CE‐UV and SPE‐CE‐MS) was evaluated for the analysis of opioid peptides. A microcartridge of 150 μm id was packed with a C18 sorbent (particle size > 50 μm), which was retained between a short inlet capillary and a separation capillary (50 μm id). Several experimental parameters were optimized by SPE‐CE‐UV using solutions of dynorphin A (DynA), endomorphin 1 (End1), and methionine‐enkephaline (Met). A microcartridge length of 4 mm was selected, sample was loaded for 10 min at 930 mbar and the retained peptides were eluted with 67 nL of an acidic hydro‐organic solution. Using SPE‐CE‐MS, peak area and migration time repeatabilities for the three opioid peptides were 12–27% and 4–5%, respectively. SPE recovery was lower for the less hydrophobic DynA (22%) than for End1 (66%) and Met (78%) and linearity was satisfactory in all cases between 5 and 60 ng/mL. The LODs varied between 0.5 and 1.0 ng/mL which represent an enhancement of two orders of magnitude when compared with CE‐MS. Cerebrospinal fluid (CSF) samples spiked with the opioid peptides were analyzed to demonstrate the applicability to biological samples. Peak area and migration time repeatabilities were similar to the standard solutions and the opioid peptides could be detected down to 1.0 ng/mL.  相似文献   

16.
An enantioselective high-performance liquid chromatographic assay for the quantitation of the enantiomers of ketamine and its major metabolite norketamine in human plasma is described (assay I). The procedure involved extraction of the compounds from alkalized plasma into cyclohexane. Stereoselective separation was achieved with a prepacked alpha 1-acid glycoprotein column without any derivatization procedure. A second assay using a conventional reversed-phase column to determine total (racemic) ketamine and norketamine is also described. Because of interfering plasma peaks (assay II) the cyclohexane solution was reextracted into 1 M hydrochloric acid. The detection wavelength was 215 nm for all substances. The limit of quantification of the method was ca. 40 ng/ml in plasma. The assays were sensitive and reproducible. The method was demonstrated to be sensitive for stereoselective pharmacokinetic studies of ketamine after clinical doses.  相似文献   

17.
A high‐speed separation method of capillary MEKC with LIF detection had been developed for separation and determination of amino acids in laver. The CE system comprised a manual slotted‐vial array (SVA) for sample introduction that could improve the separation efficiency by reducing injection volume. Using a capillary with 80 mm effective separation length, the separation conditions for amino acids were optimized. Applied with the separation electric field strength of 300 V/cm, the ten amino acids could be completely separated within 2.5 min with 10 mol/L Na2HPO4–NaOH buffer (pH = 11.5) including 30 mmol/L SDS. Theoretical plates for amino acids ranged from 72 000 to 40 000 (corresponding to 1.1–2.0 μm plate heights) and the detection limits were between 25 and 80 nmol/L. Finally, this method was applied to analyze the composition of amino acids in laver and eight known amino acids could be found in the sample. The contents of five amino acids, tyrosine, glutamic acid, glycine, lysine, and aspartic acid that could be completely separated in real sample were determined. The recoveries ranged from 82.3% to 123% that indicated the good reliability for this method in laver sample analysis.  相似文献   

18.
A robust CE method for the simultaneous determination of the enantiomers of ketamine and norketamine in equine plasma is described. It is based upon liquid-liquid extraction of ketamine and norketamine at alkaline pH from 1 mL plasma followed by analysis of the reconstituted extract by CE in the presence of a pH 2.5 Tris-phosphate buffer containing 10 mg/mL highly sulfated beta-CD as chiral selector. Enantiomer plasma levels between 0.04 and 2.5 microg/mL are shown to provide linear calibration graphs. Intraday and interday precisions evaluated from peak area ratios (n = 5) at the lowest calibrator concentration are < 8 and < 14%, respectively. The LOD for all enantiomers is 0.01 microg/mL. After i.v. bolus administration of 2.2 mg/kg racemic ketamine, the assay is demonstrated to provide reliable data for plasma samples of ponies under isoflurane anesthesia, of ponies premedicated with xylazine, and of one horse that received romifidine, L-methadone, guaifenisine, and isoflurane. In animals not premedicated with xylazine, the ketamine N-demethylation is demonstrated to be enantioselective. The concentrations of the two ketamine enantiomers in plasma are equal whereas S-norketamine is found in a larger amount than R-norketamine. In the group receiving xylazine, data obtained do not reveal this stereoselectivity.  相似文献   

19.
A simple high‐performance liquid chromatographic (HPLC) method with photometric detection is described for the determination of vardenafil hydrochloride, a phosphodiesterase V inhibitor, in human plasma. Chromatographic separation of the analyte and internal standard was achieved on an analytical 250 × 4.6 mm i.d. reversed‐phase Kromasil KR 100 C18 (5 µm particle size) column using a mobile phase of acetonitrile–potassium dihydrogen phosphate (30:70 v/v). The run time was less than 15 min. Column eluate was monitored at 230 nm. The linearity over the concentration range of 10–1500 ng/mL for vardenafil was obtained and the limit of quantification (LOQ) was 10 ng/mL. The method has been applied to analysis of the vardenafil concentrations for application in pharmacokinetic studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, a sensitive HPLC‐UV assay was developed and validated for the determination of LASSBio‐1736 in rat plasma with sodium diclofenac as internal standard (IS). Liquid–liquid extraction using acetonitrile was employed to extract LASSBio‐1736 and IS from 100 μL of plasma previously basified with NaOH 0.1 M. Chromatographic separation was carried on Waters Spherisorb®S5 ODS2 C18 column (150 × 4.6 mm, 5 μm) using an isocratic mobile phase composed by water with triethylamine 0.3% (pH 4), methanol and acetonitrile grade (45:15:40, v/v/v) at a flow rate of 1 mL/min. Both LASSBio‐1736 and IS were eluted at 4.2 and 5 min, respectively, with a total run time of 8 min only. The lower limit of quantification was 0.2 μg/mL and linearity between 0.2 and 4 μg/mL was obtained, with an R2 > 0.99. The accuracy of the method was >90.5%. The relative standard deviations intra and interday were <6.19 and <7.83%, respectively. The method showed the sensitivity, linearity, precision, accuracy and selectivity required to quantify LASSBio‐1736 in preclinical pharmacokinetic studies according to the criteria established by the US Food and Drug Administration and European Medicines Agency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号