首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The H+ acceptor activity of a proton sponge, namely, diphenyl bis(octadecylamino)phosphonium bromide, has been studied at the air-liquid interface using several subphases. Mixed Langmuir and Langmuir-Blodgett (LB) films containing the proton sponge and a fatty acid (behenic acid) in the whole composition range have been prepared. Surface pressure versus area per molecule isotherms were recorded and excess Gibbs energies of mixing calculated. The existence of strong interactions between the proton sponge and the fatty acid is observed when the subphase is either pure water or a NaOH aqueous solution. A stoichiometric 1:1 reaction between both molecules takes place at the air-water interface. This reaction has an efficiency close to 100% at high surface pressures, provided the majority anion present in the subphase is OH-. However, when the majority anion is another one, this complex is hardly formed. From the experimental results, we conclude that the acid-base reaction is highly dependent on the protonation state of the proton sponge at the air-liquid interface that is a function of the present counterion in the subphase. The floating films were also transferred onto solid substrates and characterized by means of IR spectroscopy, atomic force microscopy (AFM), and X-ray diffraction to investigate in more detail the complex formation. The interactions between the complex (when formed) and the excess component have been studied in terms of the subphase nature. It was found that the complex is immiscible with the proton sponge, yielding films made of different domains. Nevertheless, the complex is miscible with the fatty acid when the subphase used is an alkaline solution, presumably due to electrostatic interactions between the carboxylate group of the acid and the complex.  相似文献   

2.
In this work, organized mixed monolayers containing a cationic water-insoluble iridium(III) complex, Ir-dye, [Ir(ppy)(2)(tmphen)]PF(6), (tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline, and ppy = 2-phenylpyridine), and an anionic lipid matrix, DMPA, dimyristoyl-phosphatidic acid, with different molar proportions, were formed by the co-spreading method at the air-water interface. The presence of the dye at the interface, as well as the molecular organization of the mixed films, is deduced from surface techniques such as pi-A isotherms, Brewster angle microscopy (BAM) and reflection spectroscopy. The results obtained remark the formation of an equimolar mixed film, Ir-dye/DMPA = 1:1. BAM images reveal a whole homogeneous monolayer, with gradually increasing reflectivity along the compression process up to reaching the collapse of this equimolecular monolayer at pi approximately equal to 37 mNm(-1). Increasing the molar ratio of DMPA in the mixture, the excess of lipid molecules organizes themselves forming dark flower-like domains of pure DMPA at high surface pressures, coexisting with the mixed Ir-dye/DMPA = 1:1 monolayer. On the other hand, unstable mixed monolayers are obtained by using an initial dye surface concentration higher than the equimolecular one. These mixed Langmuir monolayers have been successfully transferred onto solid substrates by the LB (Langmuir-Blodgett) technique.  相似文献   

3.
This paper reports the preparation and characterization of pure Langmuir and Langmuir-Blodgett (LB) films of a stilbene derivative containing two alkyl chains, namely 4-dioctadecylamino-4'-nitrostilbene. Mixed films incorporating docosanoic acid and the stilbene derivative are also studied. Brewster angle microscopy (BAM) analysis has revealed the existence of randomly oriented three-dimensional (3D) aggregates, spontaneously formed immediately after the spreading process of the stilbene derivative onto the water surface. These 3D aggregates coexist with a Langmuir film that shows the typical gas, liquid, and solid-like phases in the surface pressure and surface potential vs area per molecule isotherms, indicative of an average preferential orientation of the stilbene compound at the air-water interface, and a gradual molecular arrangement into a defined structure upon compression. A blue shift of 55 nm of the reflection spectrum of the Langmuir film with respect to the spectrum of a chloroform solution of the nitrostilbene indicates that two-dimensional (2D) H-aggregates are formed at the air-water interface. The monolayers are transferred undisturbed onto solid substrates with atomic force microscopy (AFM) revealing that the one layer LB films are constituted by a monolayer of the stilbene derivative together with some 3D aggregates. When the nitrostilbene compound is blended with docosanoic acid, the 3D aggregation is avoided in the Langmuir and Langmuir-Blodgett films, but does not limit the formation of 2D H-aggregates, desirable for second-order nonlinear optical response in the blue domain. The AFM images of the mixed LB films show that they are formed by a docosanoic acid monolayer and, on the top of it, a bilayer of the stilbene derivative.  相似文献   

4.
The formation, morphology, and structure of two-dimensional Langmuir-Blodgett (LB) assemblies of octadecyltriazole (ODT)-based metal-containing oligomers presenting, in the case of iron, the spin-crossover phenomenon is studied with Brewster angle microscopy, IR dichroism, X-ray diffraction, and atomic force microscopy. Two processes occurring at the air-water interface are confirmed to dominate the mechanism of formation of these LB films, the instability of the coordination polymers at the air-water interface and recoordination of metal ions in the subphase at the interface during the LB deposition process. The Langmuir film allowing the LB film formation is mostly made of ODT. The films do present a lamellar structure in which the ODT molecules are tilted and incorporate coordinated isolated metal ions and oligomers of metal ions. The morphology of the LB films is globally flat but with a rather high roughness resulting from inhomogeneities related to phenomena occurring during the LB film formation. These observations are in agreement with the relative affinity of the metal ions with ODT and the relative stability of the coordination polymers at the air-water interface, which have been determined for the group Cu-Fe-Co-Ni.  相似文献   

5.
Langmuir-Blodgett (LB) films are constructed by successively transferring monomolecular layers formed at the air-water interface onto solid substrates. One of the advantages of the LB technique in fabricating molecular aggregates lies in the fact that it can employ various kinds of molecules by mixing them at the air-water interface. The mixed system may exhibit new properties that are not observed for individual components. This method would be useful, for example, in the studies of the formation and control of the J-aggregates of functional dyes that attract attention both in science and technology. In this paper, I review this subject mainly based on our recent results in merocyanines. LB films of merocyanine dyes, mixed with arachidic acid (C(20)), exhibit J-aggregate formation and have been serving as typical systems in revealing the physical and structural aspects of nanosized molecular aggregates constructed as monolayers. In the case of LB films of a merocyanine dye having benzothiazole as donor nucleus (abbreviated as DS), electron spin resonance (ESR) spectroscopy has been successful in determining the characteristic in-plane orientation of dye molecules with respect to the dipping direction, which led to the discovery of the flow orientation effect during the dipping process of LB films as the origin of optical dichroism often observed in LB films. In this article, after an introduction of ESR spectroscopy, three major topics on the merocyanine J-aggregation and its characterization in mixed films are discussed. The first topic is the observation and control of the size of J-aggregates in the dilution limit of dyes in arachidic acid matrix for a methyl-substituted DS (6-Me-DS). Dependence of atomic force microscopy (AFM) patterns on the molar ratio allows the identification of dye domains. J-band optical peak analysis based on the Kuhn's extended dipole model, supplemented by a novel application of femtosecond pump-probe optical spectroscopy, yields the size of the J-aggregates of 10(3). The second topic is the control of the J-band peak wavelengths by mixing two different kinds of dye molecules. The first case is the mixture of a J-forming 6-Me-DS and non-J-forming merocyanine analog, DO with benzo-oxazole instead of benzothiazole of DS. The second case is the mixture of both J-forming dyes but with different J-band peak positions, 6-Me-DS and another analog of 5-Cl-DS. The optical peak shifts depending on the molar mixing ratio will be presented. The last topic is related to the elucidation of electronic states of dye molecules in the J-aggregates. Light-induced ESR (LESR) of DS films with stable isotope ((15)N or (13)C)-substituted dyes provide clear evidence for the photoinduced charge transfer by the detection of hyperfine structures. Moreover, infrared (IR) spectroscopy of (13)C-enriched dye identifies the IR absorption peak of the relevant carbon in the chromophore. The results give evidence for the enhanced intramolecular charge transfer of dyes in the J-aggregates compared with an isolated merocyanine composed of donor and acceptor moiety. Lastly, the Cl attachment in 5-Cl-DS leads to a significant enhancement of the nitrogen hyperfine coupling in the LESR spectra. These examples and others demonstrate the potential of LB films of merocyanines in the studies of the nanosized molecular aggregates in monolayer assemblies.  相似文献   

6.
采用氯仿作为铺展溶剂,将嵌段共聚物聚苯乙烯-聚(4-乙烯基吡啶)(PS-b-P4VP)稀溶液铺展于空气与水界面上,利用Langmuir-Blodgett(LB)膜技术转移至固体基底.研究了不同的嵌段比、表面压和小分子1-芘丁酸(PBA)的加入对嵌段共聚物气液界面聚集组装的影响.研究发现随着亲水段(P4VP)的增加,聚集组装结构由纳米片状、带状转变成纳米条状、纳米点状结构.表面压对纯PS-b-P4VP聚集组装产生影响,表面压增大,组装体排列紧密;随着表面压的继续增大,单层聚集结构遭到破坏,发生堆叠.加入PBA小分子后,PBA与PS-b-P4VP形成氢键,形态发生明显变化,原来的片状结构转变为条状或点状结构.  相似文献   

7.
This communication reports the surface pressure (pi) versus area per molecule (A) isotherm characteristics of the mixed films of 9-phenyl anthracene (PA) in stearic acid (SA) and polymethyl methacrylate (PMMA) matrices, at the air-water interface. The mixed Langmuir films at the air-water interface have been observed to be easily transferred onto solid substrates to form uniform Langmuir-Blodgett films. By changing various parameters, namely molefraction, surface pressure of lifting and number of layers, the mixed Langmuir-Blodgett (LB) films of various types have been fabricated successfully and their spectroscopic characteristics have been reported. From the isotherm characteristics and the area per molecule versus molefraction plot, it is evident that the PA molecules are successfully incorporated into mixed Langmuir-Blodgett films. UV-vis absorption spectroscopic study of the mixed LB films at various molefractions of PA in two different matrices reveal that formation of I-type aggregate in PMMA matrix whereas both I- and H-type aggregates are playing their dominant role in SA matrix. Moreover, fluorescence spectroscopic study reveals reabsorption effect. Molecular movement persists in the freshly prepared LB films, as is evident from the time dependent changes in both UV-vis absorption and fluorescence spectra of the mixed LB films in both matrices. From our observation it is evident that about 200 h is required to get the LB films in a stable condition. Dimers and higher order n-mers are formed at a higher surface pressure of 30 mNm(-1).  相似文献   

8.
Zhang S  Chen ZK  Bao GW  Li SF 《Talanta》1998,45(4):727-733
Mixed chloroform solution of Polysiloxane PS-264 and stearic acid was made into multilayer Langmuir-Blodgett (LB) films on the surface of quartz crystal microbalance (QCM). The condition for forming mixed multilayer LB films is discussed in this paper. In addition, PS-264, stearic acid and their mixture (molar ratio 1:1) were coated on the surface of QCM sensors by a spin coating method. The above modified crystals were exposed to different concentrations of various organic vapors, including related chlorinated hydrocarbons and alcohol vapors. The results of frequency changes corresponding to concentration change of the above vapors were compared. The linear regression coefficients of the QCM with LB film had better values (0.9881相似文献   

9.
The morphologies of phase-separated monolayer films prepared from two different binary mixtures of perfluorocarbons and hydrocarbons have been examined and compared, for the first time, at the solid-air and liquid-air interfaces. Films were comprised of binary mixtures of arachidic acid (C(19)H(39)COOH) with perfluorotetradecanoic acid (C(13)F(27)COOH) and of palmitic acid (C(15)H(31)COOH) with perfluorooctadecanoic acid (C(17)F(35)COOH). For both mixed systems, Langmuir Blodgett films on mica substrates consisted of polygonal domains of one surfactant dispersed in a continuous matrix of the other (arachidic acid in perfluorotetradecanoic acid or perfluorooctadecanoic acid in palmitic acid, respectively), consistent with previous reports. Real-time imaging of the air-water interface via Brewster angle microscopy revealed that comparable film morphology was present at the air-water interface and the solid-air interface over a wide range of surface pressures, and that for the arachidic acid-based mixture, domain growth dynamics at the air-water interface is consistent with that inferred from sequential "static" atomic force microscope images collected at the solid-air interface.  相似文献   

10.
Mixed monolayer surfactant films of perfluorotetradecanoic acid and the photopolymerizable diacetylene molecule 10,12-pentacosadiynoic acid were prepared at the air-water interface and transferred onto solid supports via Langmuir-Blodgett (LB) deposition. The addition of the perfluoroacid to the diacetylene surfactant results in enhanced stabilization of the monolayer in comparison with the pure diacetylene alone, allowing film transfer onto a solid substrate without resorting to addition of cations in the subphase or photopolymerization prior to deposition. The resulting LB films consisted of well-defined phase-separated domains of the two film components, and the films were characterized by a combination of atomic force microscope (AFM) imaging and fluorescence emission microscopy both before and after photopolymerization into the highly emissive "red form" of the polydiacetylene. Photopolymerization of the monolayer films resulted in the formation of diacetylene bilayers, which were highly fluorescent, with the apparent rate of photopolymerization and the fluorescence emission of the films being largely unaffected by the presence of the perfluoroacid.  相似文献   

11.
This article describes the synthesis and fabrication of Langmuir and Langmuir-Blodgett (LB) films incorporating a chiral azobenzene derivative, namely, ( S)-4- sec-butyloxy-4'-[5'-(methyloxycarbonyl)pentyl-1'-oxy]azobenzene, abbreviated as AZO-C4(S). Appropriate conditions for the fabrication of monolayers of AZO-C4(S) at the air-water interface have been established, and the resulting Langmuir films have been characterized by a combination of surface pressure and surface potential versus area per molecule isotherms, Brewster angle microscopy, and UV-vis reflection spectroscopy. The results indicate the formation of an ordered trilayer at the air-water interface with UV-vis reflection spectroscopy showing a new supramolecular architecture for multilayered films as well as the formation of J aggregates. Films were transferred onto solid substrates, with AFM revealing well-ordered multilayered films without 3D defects. Infrared and UV-vis absorption spectroscopy indicate that the supramolecular architecture may be favored by the formation of H bonds between acid groups in neighboring layers and pi-pi intermolecular interactions. Circular dichroism spectra reveal chiro-optical activity in multilayered LB films.  相似文献   

12.
Octadecanethiol (ODT) is known to form self-assembled monolayer on noble metal surfaces which has potential technological applications. Langmuir-Blodgett (LB) technique is another useful method of obtaining highly ordered assembly of molecules. It is of interest to find whether ODT molecules can also form a stable Langmuir monolayer which facilitates the preparation of LB films. In literature, it has been reported that ODT molecules form an unstable Langmuir monolayer. We have studied the stability of the monolayer of the ODT molecules at air-water interface using surface manometry and microscopy techniques. We find the monolayer to be stable on ultrapure water of resistivity greater than 18MOmega cm. However, the behavior changes in the presence of even small amount of additives like NaOH or CdCl2 in the subphase. Our AFM studies on the LB films of ODT deposited from ion-free ultrapure water showed streak-like bilayer domains. The LB films of ODT deposited from CdCl2 containing aqueous subphase yield dendritic domains of the complexed unit grown over ODT monolayer. These nanostructures on surfaces may have potential applications in molecular electronics.  相似文献   

13.
We present the relationship between the spatial arrangement and the photophysical properties of fluorescent polymers in thin films with controlled structures. Eight surfactant poly(p-phenyleneethynylene)s were designed and studied. These detailed studies of the behavior of the polymers at the air-water interface, and of the photophysical properties of their transferred LB films, revealed key structure-property relationships. Some of the polymers displayed pi-aggregates that are characteristic of an edge-on structure at the air-water interface. Monolayer LB films of these polymers showed greatly reduced quantum yields relative to solution values. Other polymers exhibited a highly emissive face-on structure at the air-water interface, and did not form pi-aggregates. The combination of pressure-area isotherms and the surface pressure dependent in situ UV-vis spectra of the polymers at the air-water interface revealed different behavioral details. In addition, the UV-vis spectra, fluorescence spectra, and quantum yields of the LB films provide design principles for making highly emissive films.  相似文献   

14.
The essence of this study is to apply the Langmuir-Blodgett (LB) technique for assembling asymmetric membranes. Accordingly, Langmuir films of a (further) polymerizable polymer, 1,2-polybutadiene (1,2-pbd), were studied and transferred onto different solid supports, such as gold, indium tin oxide (ITO), and silicon. The layers were characterized both at the air/water interface as well as on different substrates using numerous methods including cyclic voltammetry, impedance spectroscopy, spectroscopic ellipsometry, atomic force microscopy, X-ray photoelectron spectroscopy, and reflection-absorption Fourier transform infrared spectroscopy. The Langmuir films were stable at the air-water interface as long as they were not exposed to UV irradiation. The LB films formed disorganized layers, which gradually blocked the permeation of different species with increasing the number of deposited layers. The thickness was ca. 4-7 ? per layer. Irradiating the Langmuir films caused their cross-linking at the air-water interface. Furthermore, we took advantage of the reactivity of the double bond of the LB films on the solid supports and graft polymerized acrylic acid on top of the 1,2-pbd layers. This approach is the basis of the formation of an asymmetric membrane that requires different porosity on both of its sides.  相似文献   

15.
A poly(heteroarylene methine) derivative, poly[(2,5-thiophenediyl) (p-n-methyl, n-octylaminobenzylidene) (2,5-thiophenequinodimethaneiyl)] (PTABQ), has been synthesized and spread at the air-water interface. The influences of three kinds of solutions on PTABQ monolayer behavior at the air-water interface have been investigated via the measurements of the pi-A isotherm and film stability. The results show that all three kinds of PTABQ solutions are apt to form the stable and transferable monolayer film organized with the plane of its pi-system nearly perpendicular to the air-water interface. Moreover, the monolayer-forming ability of PTABQ can be improved by introducing a water-soluble amphiphilie as an extractable spread-aiding component, which is further proved by the AFM images and FTIR spectra of the transferred films. UV-visible absorption spectra indicate that the well-ordered layer-by-layer structure is successfully controlled in the LB films. The optical bandgap of PTABQ is reduced for the ordered arrangement of its molecules in LB films. The intrinsic electrical conductivity of PTABQ LB films is 8.1 x 10(-8) S/cm and the conductivity of iodine-doped films is 5.7 x 10(-7) S/cm.  相似文献   

16.
Nickel arachidate (NiA) Langmuir-Blodgett (LB) films have been deposited on hydrophilic Si(0 0 1) substrates by three (up-down-up) and five (up-down-up-down-up) strokes. During deposition, substrates were kept inside the water subphase for different times after each down stroke. Structural information of all the LB films have been obtained from X-ray reflectivity (XRR) studies. One and two symmetric monolayer (SML) was deposited on top of the asymmetric monolayer (AML) in three and five stokes respectively. All the preformed LB films were then used to go through the air-water interface with the same speed that was used at the time of film deposition. Structural information obtained from the XRR studies show that mainly the top layer density decreases after passing through the air-water interface but the layered structure remains the same. Information obtained from both the XRR and atomic force microscopy (AFM) studies suggest that molecules peeled from the top SML layer do not reincorporate with the LB film through tail-tail hydrophobic interaction. Our study shows that NiA LB film has better stability compared with cadmium arachidate LB film inside the water subphase without forming any out-of-plane molecular reorganization.  相似文献   

17.
This communication reports the formation of complex Langmuir monolayer at the air-water interface by charge transfer types of interaction with the water soluble N-cetyl N,N,N-trimethyl ammonium bromide (CTAB) molecules doped with rosebengal (RB), with the stearic acid (SA) molecules of a preformed SA Langmuir monolayer. The reaction kinetics of the formation of RB-CTAB-SA complex monolayer was monitored by observing the increase in surface pressure with time while the barrier was kept fixed. Completion of interaction kinetics was confirmed by FTIR study. This complex Langmuir films at the air-water interface was transferred onto solid substrates at a desired surface pressure to form multilayered Langmuir-Blodgett films. Spectroscopic characterizations reveal some molecular level interactions as well as formation of microcrystalline aggregates depending upon the molar ratios of CTAB and RB within the complex LB films. Presence of two types of species in the complex LB films was confirmed by fluorescence spectroscopy.  相似文献   

18.
《Vibrational Spectroscopy》2004,34(1):169-173
The monolayer of the mixture of octadecanoic acid and octadecylamine with molar ratio 1:1 has been investigated at the air–water interface. It was found that the monolayer shows a rather stable state at the surface pressure of 30 mN/m and this monolayer can be transferred onto a CaF2 plate by Langmuir–Blodgett (LB) technique. The infrared spectra of LB films indicated that octadecylammonium octadecanoate is formed by an intermolecular proton exchange between adjacent carboxylic and aminic groups (COO and NH3+). In three-layer LB film, the CH2 scissoring mode of the long hydrocarbon chains of octadecylammonium octadecanoate shows a broad band feature at about 1468 cm−1 while this vibrational mode of three-layer LB film of the mixture (1:1) of deuterated stearic acid and octadecylamine (octadecylammonium octadecanoate-d35, C18H37NH3+C17D35COO) only shows a narrow band. The broad feature of the CH2 scissoring mode in octadecylammonium octadecanoate probably originates from the coupling between the chain of stearic acid and that of octadecylamine while this kind of coupling could be completely removed in octadecylammonium octadecanoate-d35. Another conclusion presented in this paper is that there are no couplings among the chains of fatty acid or among the chains of octadecylamine in LB films of octadecylammonium octadecanoate.  相似文献   

19.
三嵌段共聚物在气-液界面的有序组装   总被引:1,自引:0,他引:1  
将氢化的苯乙烯(PS)/丁二烯(PB)/苯乙烯(PS)三嵌段共聚物(SEBS)磺化,得到磺化的SEBS(S-SEBS),在水亚相上铺展了S-SEBS的Langmuir膜,研究其π-A特性.制备S-SEBS的Langmuir-Blodgett(LB)膜,用原子力显微镜(AFM)对其表面形态进行了研究,并以芘作为荧光探针研究了溶液和膜中S-SEBS聚集态的变化.研究结果表明,S-SEBS在气-液界面可以形成由两亲性的纳米小球组装而成的有序的二维和三维的纳米结构.对纳米结构形成的机理进行了初步分析.  相似文献   

20.
The Langmuir-Blodgett (LB) monolayers offer a unique system to study molecular interaction at the air-water interface with reduced dimensionality. In order to develop this further to follow macromolecular interactions at equilibrium, we first characterized the Ni (II)-arachidate (NiA) monolayer at varying conditions. Subsequently, the interaction between NiA and histidine-tagged RNA polymerase (HisRNAP) were also studied. LB films of arachidic acid-NiA and NiA-RNAP with different mole fractions were fabricated systematically. Surface pressure versus area per molecule (P-A) isotherms were registered, and the excess Gibbs energy of mixing was calculated. The LB films were then deposited on solid supports for Fourier transform infrared (FTIR) spectroscopic measurements. The FTIR spectra revealed the change in the amount of incorporated Ni (II) ions into the arachidic acid monolayer with the change in pH and the increasing mole fraction of RNAP in the NiA monolayer with its increasing concentration in the subphase. The system developed here seems to be robust and can be utilized to follow macromolecular interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号