首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The concepts of both protein glycosylation and cellular signaling have been influenced by O-linked-β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) on the hydroxyl group of serine or threonine residues. Unlike conventional protein glycosylation, O-GlcNAcylation is localized in the nucleocytoplasm and its cycling is a dynamic process that operates in a highly regulated manner in response to various cellular stimuli. These characteristics render O-GlcNAcylation similar to phosphorylation, which has long been considered a major regulatory mechanism in cellular processes. Various efficient chemical approaches and novel mass spectrometric (MS) techniques have uncovered numerous O-GlcNAcylated proteins that are involved in the regulation of many important cellular events. These discoveries imply that O-GlcNAcylation is another major regulator of cellular signaling. However, in contrast to phosphorylation, which is regulated by hundreds of kinases and phosphatases, dynamic O-GlcNAc cycling is catalyzed by only two enzymes: uridine diphospho-N-acetyl-glucosamine:polypeptide β-N-acetylglucosaminyl transferase (OGT) and β-D-N-acetylglucosaminidase (OGA). Many useful chemical tools have recently been used to greatly expand our understanding of the extensive crosstalk between O-GlcNAcylation and phosphorylation and hence of cellular signaling. This review article describes the various useful chemical tools that have been developed and discusses the considerable advances made in the O-GlcNAc field.  相似文献   

2.
O-GlcNAcylation of serine and threonine residues is a dynamic and essential post-translational modification involved in signaling pathways in eukaryotes. Studies of O-GlcNAcylation would be aided by small-molecule inhibitors of O-GlcNAc transferase (OGT), the sole enzyme know to mediate this modification, but discovery of such molecules has been hampered by poor expression of cloned OGT and lack of suitable high-throughput screens. This Communication describes the development an expression system to access large amounts of the catalytic domain of OGT and the implementation of a fluorescence-based substrate analogue displacement assay that has led to the discovery of a set of OGT inhibitors. This work lays the foundation for both structural and functional analysis of the catalytic domain of OGT.  相似文献   

3.
4.
O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) is directly associated with the level of O-GlcNAc glycosylation of biomolecules and various diseases, and it is expected to be a promising potential new therapeutic target. Here, we develop a robust and sensitive method for OGT assay based on capillary electrophoresis-laser induced fluorescence (CE-LIF) method. AF-488-modified peptide containing serine active group is designed as substrate for OGT-catalyzed reaction, and nonradioactive UDP-GlcNAc is employed as sugar donor to perform O-GlcNAc glycosylation modification. The enzyme activity of OGT is measured by quantitative determination of glycosylated peptide produced by the reaction. Large volume sample stacking technique for sample injection and a unique fluorescence collection system for LIF detection are adopted to greatly enhance the detection sensitivity, thus a low limit of detection down to 0.23 pM for OGT detection is achieved. The method is successfully applied to detect OGT activity in clinical blood samples with satisfactory accuracy. Our study provides a simple, accurate, and sensitive method with great potential application in clinical diagnosis of O-GlcNAc-related diseases.  相似文献   

5.
Posttranslational modification of metazoan nucleocytoplasmic proteins with N-acetylglucosamine (O-GlcNAc) is essential, dynamic, and inducible and can compete with protein phosphorylation in signal transduction. Inhibitors of O-GlcNAcase, the enzyme removing O-GlcNAc, are useful tools for studying the role of O-GlcNAc in a range of cellular processes. We report the discovery of nanomolar OGA inhibitors that are up to 900,000-fold selective over the related lysosomal hexosaminidases. When applied at nanomolar concentrations on live cells, these cell-penetrant molecules shift the O-GlcNAc equilibrium toward hyper-O-GlcNAcylation with EC?? values down to 3 nM and are thus invaluable tools for the study of O-GlcNAc cell biology.  相似文献   

6.
Serine and threonine residues in many proteins can be modified by either phosphorylation or GlcNAcylation. To investigate the mechanism of O-GlcNAc and O-phosphate's reciprocal roles in modulating the degradation and activity of murine estrogen receptor beta (mER-beta), the conformational changes induced by O-GlcNAcylation and O-phosphorylation of Ser(16) in 17-mer model peptides corresponding to the N-terminal intrinsically disordered (ID) region of mER-beta were studied by NMR techniques, circular dichroism (CD), and molecular dynamics simulations. Our results suggest that O-phosphorylation discourages the turn formation in the S(15)STG(18) fragment. In contrast, O-GlcNAcylation promotes turn formation in this region. Thus, we postulate that the different changes of the local structure in the N-terminal S(15)STG(18) fragment of mER-beta caused by O-phosphate or O-GlcNAc modification might lead to the disturbances to the dynamic ensembles of the ID region of mER-beta, which is related to its modulatory activity.  相似文献   

7.
Glycosyltransferases are a superfamily of enzymes that are notoriously difficult to inhibit. Here we apply an mRNA display technology integrated with genetic code reprogramming, referred to as the RaPID (random non-standard peptides integrated discovery) system, to identify macrocyclic peptides with high binding affinities for O-GlcNAc transferase (OGT). These macrocycles inhibit OGT activity through an allosteric mechanism that is driven by their binding to the tetratricopeptide repeats of OGT. Saturation mutagenesis in a maturation screen using 39 amino acids, including 22 non-canonical residues, led to an improved unnatural macrocycle that is ≈40 times more potent than the parent compound (Kiapp=1.5 nM). Subsequent derivatization delivered a biotinylated derivative that enabled one-step affinity purification of OGT from complex samples. The high potency and novel mechanism of action of these OGT ligands should enable new approaches to elucidate the specificity and regulation of OGT.  相似文献   

8.
9.
Protein O-GlcNAcylation is an essential reversible posttranslational modification in higher eukaryotes. O-GlcNAc addition and removal is catalyzed by O-GlcNAc transferase and O-GlcNAcase, respectively. We report the molecular details of the interaction of a bacterial O-GlcNAcase homolog with three different synthetic glycopeptides derived from characterized O-GlcNAc sites in the human proteome. Strikingly, the peptides bind a conserved O-GlcNAcase substrate binding groove with similar orientation and conformation. In addition to extensive contacts with the sugar, O-GlcNAcase recognizes the peptide backbone through hydrophobic interactions and intramolecular hydrogen bonds, while avoiding interactions with the glycopeptide side chains. These findings elucidate the molecular basis of O-GlcNAcase substrate specificity, explaining how a single enzyme achieves cycling of the complete O-GlcNAc proteome. In addition, this work will aid development of O-GlcNAcase inhibitors that target the peptide binding site.  相似文献   

10.
Uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc) is the final product of hexosamine biosynthetic pathway (HSP) and the donor substrate for the modification of nucleocytoplasmic proteins at serine and threonine residues with N-acetylglucosamine (GlcNAc) catalyzed by O-GlcNAc transferase (OGT). Many analogs of UDP-GlcNAc were designed to interfere with the process of protein O-glycosylation by blocking OGT. A novel rearrangement reaction was observed in which phosphate-N-acetylglucosamine moiety migrated to 3' terminus of ribose in ESI-MS(n) of UDP-GlcNAc. Results from tandem mass spectrometry, control experiments and calculation showed that the phosphate-N-acetylglucosamine migration might undergo a pentacoordinate phosphoric intermediate. Furthermore, the acetylation of glucosamine in UDP-GlcNAc was essential in the migration process.  相似文献   

11.
O-GlcNAcylation has now been added to the growing list of histone modifications making up the multifaceted "histone-code" (Sakabe et?al., 2010). The sites of O-GlcNAc-histone modification hint at a role in chromatin remodeling, thus adding to mounting evidence that O-GlcNAc cycling sits atop a robust regulatory network maintaining higher-order chromatin structure and epigenetic memory.  相似文献   

12.
Protein phosphorylation and O-GlcNAcylation are reciprocally regulated. As hyperphosphorylation is implicated in tau pathology, approaches have been exploited to reduce the magnitude of tau phosphorylation by increasing the level of tau O-GlcNAcylation. With mathematic models constructed to describe different kinetic scenarios, we analyzed the temporal change of an O-GlcNAcylated protein in contrast to that of the phosphorylated form upon inhibition of O-GlcNAcase (OGA). The analyses indicate that when degradation of the modified protein is negligible relative to the naked one, the magnitude of O-GlcNAcylated protein increase is proportional to the level of inhibition, while the extent of phosphorylated protein decline varies due to other factors. Furthermore, the increase of O-GlcNAcylated protein parallels with the decrease of phosphorylated form upon acute or short-term inhibition of OGA, as observed in many in vitro and short term in vivo studies. However, phosphorylated protein is predicted to return to its initial level while O-GlcNAcylated protein to achieve a higher steady level under sustained inhibition. This simulated result is in line with a recent report on long-term inhibition of OGA in transgenic mice. Noticeably, inhibition withdrawal is anticipated to cause a transient rise of phosphorylated protein. If degradation of modified proteins proceeds in addition to the naked one, the characteristic temporal profiles of each form in response to OGA inhibition would depend on the relative importance of individual degradation pathways. The models described herein may serve as a useful investigational tool that will provide insight into pharmacological intervention for tauopathies in particular and for reciprocally modulated reactions in general.  相似文献   

13.
O-GlcNAc transferase (OGT) is one of essential mammalian enzymes, which catalyze the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine (UDP-GlcNAc) to hydroxyl groups of serines and threonines (Ser/Thr) in proteins. Dysregulations of cellular O-GlcNAc have been implicated in diabetes, neurodegenerative disease, and cancer, which brings great interest in developing potent and speci c small-molecular OGT inhibitors. In this work, we performed virtual screening on OGT catalytic site to identify potential inhibitors. 7134792 drug-like compounds from ZINC (a free database of commercially available compounds for virtual screening) and 4287550 compounds generated by FOG (fragment optimized growth program) were screened and the top 116 compounds ranked by docking score were analyzed. By comparing the screening results, we found FOG program can generate more compounds with better docking scores than ZINC. The top ZINC compounds ranked by docking score were grouped into two classes, which held the binding positions of UDP and GlcNAc of UDPGlcNAc. Combined with individual fragments in binding pocket, de novo compounds were designed and proved to have better docking score. The screened and designed compounds may become a starting point for developing new drugs.  相似文献   

14.
We report a new strategy for the parallel identification of O-GlcNAc-glycosylated proteins from cell lysates. The approach permits specific proteins of interest to be rapidly interrogated for the modification in any tissue or cell type and can be extended to peptides to facilitate the mapping of glycosylation sites. As an illustration of the approach, we identified four new O-GlcNAc-glycosylated proteins of low cellular abundance (c-Fos, c-Jun, ATF-1, and CBP) and two short regions of glycosylation in the enzyme O-GlcNAc transferase (OGT). The ability to target specific proteins across various tissue or cell types complements emerging proteomic technologies and should advance our understanding of this important posttranslational modification.  相似文献   

15.
Glycosyltransferases carry out important cellular functions in species ranging from bacteria to humans. Despite their essential roles in biology, simple and robust activity assays that can be easily applied to high-throughput screening for inhibitors of these enzymes have been challenging to develop. Herein, we report a bead-based strategy to measure the group-transfer activity of glycosyltransferases sensitively using simple fluorescence measurements, without the need for coupled enzymes or secondary reactions. We validate the performance and accuracy of the assay using O-GlcNAc transferase (OGT) as a model system through detailed Michaelis–Menten kinetic analysis of various substrates and inhibitors. Optimization of this assay and application to high-throughput screening enabled screening for inhibitors of OGT, leading to a novel inhibitory scaffold. We believe this assay will prove valuable not only for the study of OGT, but also more widely as a general approach for the screening of glycosyltransferases and other group-transfer enzymes.  相似文献   

16.
The modification of serine and threonine residues in proteins by a single N-acetylglucosamine (O-GlcNAc) residue is an emerging post-translational modification (PTM) with broad biological implications. However, the systematic or large-scale analysis of this PTM is hampered by several factors, including low stoichiometry and the lability of the O-glycosidic bond during tandem mass spectrometry. Using a library of 72 synthetic glycopeptides, we developed a two-stage tandem MS approach consisting of pulsed Q dissociation (PQD) for O-GlcNAc peptide detection and electron transfer dissociation (ETD) for identification and site localization. Based on a set of O-GlcNAc specific fragment ions, we further developed a score (OScore) that discriminates O-GlcNAc peptide spectra from spectra of unmodified peptides with 95% sensitivity and >99% specificity. Integrating the OScore into the two-stage LC-MS/MS approach detected O-GlcNAc peptides in the low fmol range and at 10-fold better sensitivity than a single data-dependent ETD tandem MS experiment.  相似文献   

17.
18.
beta-O-N-Acetyl-d-glucosamine (O-GlcNAc) is a dynamic carbohydrate modification that is involved in cell signaling and has been implicated in a variety of disease states, including Alzheimer's and type-II diabetes. Despite the importance of this modification, little is known about the spatial and temporal localization of O-GlcNAc during signaling. This is due to the lack of methods for the study of O-GlcNAc in living cell systems. Herein we report the first genetically encoded FRET-based sensor for the detection of O-GlcNAc dynamics in live mammalian cells.  相似文献   

19.
Many phosphorylation signal transduction pathways in the eukaryotic cell are modulated by posttranslational modification of specific serines/threonines with N-acetylglucosamine (O-GlcNAc). Levels of O-GlcNAc on key proteins regulate biological processes as diverse as the cell cycle, insulin signaling, and protein degradation. The two enzymes involved in this dynamic and abundant modification are the O-GlcNAc transferase and O-GlcNAcase. Structural data have recently revealed that the O-GlcNAcase possesses an active site with significant structural similarity to that of the human lysosomal hexosaminidases HexA/HexB. PUGNAc, an O-GlcNAcase inhibitor widely used to raise levels of O-GlcNAc in human cell lines, also inhibits these hexosaminidases. Here, we have exploited recent structural information of an O-GlcNAcase-PUGNAc complex to design and synthesize a glucoimidazole-based inhibitor, GlcNAcstatin, which is a 5 pM competitive inhibitor of enzymes of the O-GlcNAcase family, shows 100000-fold selectivity over HexA/B, and binds to the O-GlcNAcase active site by mimicking the transition state as revealed by X-ray crystallography. This compound is able to raise O-GlcNAc levels in human HEK 293 and SH-SY5Y neuroblastoma cell lines and thus provides a novel, potent tool for the study of the role of O-GlcNAc in intracellular signal transduction pathways.  相似文献   

20.
The addition of a single N-acetylglucosamine residue O-linked to serine and threonine residues of nuclear and cytoplasmic proteins is a widespread modification throughout all eukaryotes. The conventional method for detecting and locating sites of modification is a multi-step radioactivity-based protocol. In this paper we show that using quadrupole time-of-flight (Q-TOF) mass spectrometry, modification sites can be identified at a significantly higher sensitivity than previous approaches. This is the first demonstration that sites of O-GlcNAcylation can be identified directly using mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号