首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
董瀚阳  郭振昌  田姗姗  翟贵金  张锴 《色谱》2016,34(12):1215-1218
蛋白质的赖氨酸修饰广泛参与基因调控、转录、代谢等重要的生物过程。在真核细胞组蛋白上发现了一种新的赖氨酸修饰--2-羟基异丁酰化,这种修饰对于生殖细胞分化具有调控功能。该研究旨在探索这种修饰在原核生物非组蛋白中的特征。通过亲和富集、高效液相色谱-串联质谱鉴定和生物信息学分析,在奇异变形杆菌中鉴定到大量未见报道的2-羟基异丁酰化蛋白及其位点,进而考察了原核生物中2-羟基异丁酰化修饰蛋白的分布特征、分子网络和通路特点。研究表明,赖氨酸-2-羟基异丁酰化在原核生物中具有广泛的分布,其生物学意义值得进一步研究。  相似文献   

2.
The post-translational modifications of the 96 kDa protein dynamin A from Dictyostelium discoideum were analyzed using Q-TOF mass spectrometry. The accurate molecular mass of the intact protein revealed a covalent modification causing an additional mass of 42 Da. The modification could be identified as N-terminal acetylation by tandem mass spectrometry. Extracted ion chromatograms for the a(1) and b(1) ion of the tryptic T1 peptide were used to detect the acetylated peptide within 54 nanoelectrospray ionization tandem mass spectra. Owing to the accurate molecular mass of the intact protein, additional covalent modifications could be excluded. In addition to the covalent modification, the domain structure of dynamin A was determined by applying a combination of limited proteolysis, sodium dodecylsulfate polyacrylamide gel electrophoresis, automated tandem mass spectrometry and protein database searching.  相似文献   

3.
O-Fucosylation is an unusual posttranslational modification present in several proteins that play important roles in physiological processes such as coagulation, cell signaling and metastasis. Although the exact function of the modification is still unclear, the number of proteins found to be modified is increasing, and there is a need for further structural and functional analyses. Here we report on a rapid and straightforward approach in the analysis of glycosylation status and determination of glycosylation sites in O-fucosylated glycopeptides using nano-electrospray quadrupole time-of-flight (nano-ESI Q-TOF) mass spectrometry. In a single measurement of previously chemically untreated O-fucosylated peptides originating from the thrombospondin-1 repeats, we were able to determine the glycosylation status of the analyzed peptide, the glycosylation site, and the glycan structure. The abundance of glycosylated peptide fragment ions in MS(2) spectra suggests that nano-ESI Q-TOF mass spectrometry can be used as a general approach in structural studies of O-fucosylation in proteins.  相似文献   

4.
Ubiquitination has emerged as one of the major post-translational modifications that decide on protein fate, targeting, and regulation of protein function. Whereas the ubiquitination of proteins can be monitored with classic biochemical methods, the mapping of modified side chains proves to be challenging. More recently, mass spectrometry has been applied to identify ubiquitinated proteins and also their sites of modification. Typically, liquid chromatography tandem mass spectrometry (LC-MS/MS) based approaches, including collision-induced fragmentation (CID), have been successfully used in the past. However, a potential difficulty arises from the unstable nature of this modification, and also that the isopeptide bond linkage between C-terminal glycine and the N(ε) lysyl side chain is susceptible to fragmentation under these conditions. Here we investigate the utility of electron-transfer dissociation (ETD)-based fragmentation to detect ubiquitination sites in proteins. Our results indicate that ETD can provide alternative fragmentation patterns that allow detection of gly-gly-modified lysyl side chains, in particular z+1 fragment ions derived from triply charged precursor ions. We subsequently applied ETD fragmentation-based analysis and detected novel ubiquitination sites on DNA polymerase B1 that were not easily observed using CID. We conclude that ETD can provide significant alternative fragmentation information that complements CID-derived data to improve the coverage when mapping ubiquitination sites in proteins.  相似文献   

5.
A procedure for determining the extent of phosphorylation at individual sites of multiply phosphorylated proteins was developed and applied to two polyphosphorylated proteins. The protocol, using simple chemical (Fischer methyl-esterification) and enzymatic (phosphatase) modification steps and an accessible isotopic labeling reagent (methyl alcohol-d(4)), is described in detail. Site-specific phosphorylation stoichiometries are derived from the comparison of chemically identical but isotopically distinct peptide species analyzed by microspray liquid chromatography-mass spectrometry (microLC-MS) using a Micromass Q-TOF2 mass spectrometer. Ten phosphorylation sites were unambiguously identified in tryptic digests of both proteins, and phosphorylation stoichiometries were determined for eight of the ten sites using the isotope-coded strategy. The extent of phosphorylation was also estimated from the mass spectral peak areas for the phosphorylated and unmodified peptides, and these estimates, when compared with stoichiometries determined using the isotope-coded technique, differed only marginally (within approximately 20%).  相似文献   

6.
Phosphorylation of proteins is an important post-translational protein modification in cellular response to environmental change and occurs in both prokaryotes and eukaryotes. Identification of the amino acid on individual proteins that become phosphorylated in response to extracellular stimulus is essential for understanding the mechanisms involved in the intracellular signals that these modifications facilitate. Most protein kinases catalyze the phosphorylation of proteins on serine, threonine or tyrosine. Although tyrosine phosphorylation is often the least abundant of the three major phosphorylation sites, it is important owing to its role in signal pathways. Currently available methods for the identification of phosphorylation sites can often miss low levels of tyrosine phosphorylations. This paper describes a method for the identification of phosphotyrosine-containing peptides using electrospray ionization on an ion trap mass spectrometer. Skimmer-activated collision-induced dissociation (CID) was used to generate the phosphotyrosine immonium ion at m/z 216. This method is gentle enough that the protonated molecule of the intact peptide is still observed. In-trap CID was employed for the verification of the phosphotyrosine immonium ion. Using this technique, low levels of phosphotyrosine-containing peptides can be identified from peptide mixtures separated by nanoflow micro liquid chromatography/mass spectrometry.  相似文献   

7.
The modification of mitochondrial proteins enriched from rat forebrain by the major lipid peroxidation product 4-hydroxy-2-nonenal (HNE) was investigated using high performance liquid chromatography (HPLC) and tandem mass spectrometry. Subcellular fractionation in conjunction with a 'shotgun-based' approach that involved both conventional data-dependent and neutral loss (NL)-driven MS(3) data acquisition on a hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer (LTQ-FT) was utilized. Using a relatively rapid linear HPLC gradient (1 h) for complex mixture analysis, 24 sites of HNE modification on 15 unique proteins were identified which corresponded exclusively to Michael adduct formation on histidine residues. Since a number of HNE-modified peptides produced a predominant HNE NL fragment-ion signal upon collision-induced dissociation (CID), NL-driven MS(3) data-dependent acquisition was a valuable method to enhance fragmentation information for these particular modified peptides. Of the 24 HNE modification sites identified, approximately 25% were determined from the MS(3) spectra alone. We envision the reported methodology as an efficient screening approach for HNE modification site selectivity that could ultimately provide a foundation for the development of targeted schemes for the characterization of in vivo HNE-protein adducts.  相似文献   

8.
There is a body of evidence lending credence to the idea that oxidative stress may be responsible for age-related deleterious changes in brain function, and that protein carbonylation is a potential marker for such changes. An investigation of oxidative damage to mitochondrial proteins from aged rat brains was done using gel electrophoresis coupled with carbonylation-specific immunostaining. Six proteins that appeared to be susceptible to oxidative modification were identified by in-gel trypsin digestion followed by matrix-assisted laser desorption/ionization mass spectrometry and tandem mass spectrometry. Two subunits of the H(+)-transporting ATP synthase, adenine nucleotide translocator, voltage-dependent anion channel, glutamate oxaloacetate transaminase, and aconitase were identified as likely targets of age-associated carbonylation.  相似文献   

9.
A new approach is described to probe the structure of proteins through their reactivity with oxygen-containing radicals. Radical-induced oxidative modification of proteins is achieved within an electrospray ion source using oxygen as a reactive nebulizer gas at high needle voltages. This method facilitates the rapid oxidation of proteins as the molecules emerge from the electrospray needle tip. Electrospray mass spectra of both ubiquitin and lysozyme reveal that over 50% of the protein can be modified under these conditions. The radical-induced oxidative modification of amino acid side chains is correlated with their solvent accessibility to obtain information on a protein's higher-order structure. The oxidation sites in hen lysozyme have been identified by proteolysis of the condensed protein solution and tandem mass spectrometry (MS/MS). Oxidation of tryptophan at positions 62 and 123 occurs exclusively over all other tryptophan residues, consistent with the relative solvent accessibilities of the residue side chains based on the NMR structure of the protein. Radical-induced oxidative modification of cysteine (Cys), methionine (Met), tryptophan (Trp), phenylalanine (Phe), tyrosine (Tyr), proline (Pro), histidine (His), and leucine (Leu) residues is also reported, providing sufficient reactive markers to span a protein sequence. This facile oxidation process could be applied to investigate the molecular mechanism by which reactive oxygen species interact with a particular protein domain as a means to investigate the onset of certain diseases.  相似文献   

10.
The activity of gold/titania catalysts for the room-temperature oxidation of CO can be dramatically enhanced by the addition of sulfate ions to the support; it appears that anion promotion of gold may be a general phenomenon and may be related to the direct modification of active gold sites in the case of sulfate ions, as evidenced by secondary ion mass spectrometry.  相似文献   

11.
Two isomeric oligodeoxynucleotide hexamers, 5′-d(N-6meATGCAT)-3′ and 5′-d(ATGSmeCAT)-3′, were subjected to analysis by electrospray and ion trap mass spectrometry. In the case of the isomer with a modified adenine, location of the modified base in the sequence was straightforward and a triple mass spectrometry experiment provided information on the identity of the modification. In contrast, the isomer with the methylated cytosine did not yield definitive information on the location or identity of the modification. Tandem mass spectrometry data in this case could indicate that the modification was present on either the third or fourth nucleoside. The two isomers represent extremes in the facility with which modified bases can be identified and located in a small oligonucleotide via multiple mass spectrometry of multiply charged anions. A preference for loss of particular bases strongly influences which structurally diagnostic ions are formed upon collisional activation. The likelihood for locating and identifying a modified base is dependent, therefore, upon the likelihood that the base is lost directly from the parention.  相似文献   

12.
It is shown that several vancomycin group antibiotics (vancomycin, eremomycin, and avoparcin) undergo spontaneous chemical modifications when kept at room temperature at neutral pH in aqueous solutions containing traces of formaldehyde or acetaldehyde. This chemical modification predominantly results in a mass increase of 12 Da in the reaction with formaldehyde and 26 Da in the case of acetaldehyde. By using tandem mass spectrometry the modification can unambiguously be identified as originating from the formation of a ring-closed 4-imidazolidinone moiety at the N-terminus of the glycopeptide antibiotics, that is, near the receptor binding pocket of the glycopeptide antibiotics. Bioaffinity mass spectrometry shows that this ring-closure results in a dramatically decreased affinity for the peptidoglycan-mimicking D-alanyl-D-alanine receptor. Additionally, in vitro inhibition measurements on two different strains of bacteria have revealed that the modified antibiotics display reduced antibacterial activity. The ring-closure is also shown to have a dissociative effect on the dimerization of the vancomycin-analogue eremomycin. The spontaneous reaction of vancomycin with formaldehyde or acetaldehyde may have implications not only for the clinical use of this class of antibiotics, but also for the effectiveness of these antibiotics when they are used in chiral separation chromatography or capillary electrophoresis.  相似文献   

13.
A fully human antibody to tumor necrosis factor-alpha was expressed in the mammary glands of transgenic goats. The goat expressed antibody (gAb) is heterogeneous and has several isoforms due to typical cellular post-translational modifications. In addition, one post-secretional modification on gAb was discovered by high-resolution cation exchange chromatography (CIEX). The presence of these variants in the final product was shown to be dependent upon the initial milk storage and traditional purification methodologies used. These observations allow for the development of new sample recovery and purification processes to eliminate these variants. Various enzymatic treatments were used to characterize different gAb heavy chain C-terminal lysine and sialic acid variants. In addition, an unknown derivative with the additional mass of 140 Da was found in transgenic gAb using mass spectrometry (MS). The modification sites were identified as the N-termini of gAb light chains and heavy chains using Q-TOF MS. Characterization of transgenic gAb isoforms was facilitated by utilizing different enzymes, CIEX and MS techniques. A maleuric acid modification on the N-terminal portion of gAb was shown to be consistent with the available data characterizing this new derivative of transgenic gAb isoforms in goat milk.  相似文献   

14.
The structural characterisation of adducts formed by the in vitro reaction of haemoglobin (Hb) with styrene oxide (SO), the most reactive metabolite of the industrial reagent styrene, was obtained by liquid chromatography/electrospray ionisation mass spectrometry (LC/ES-MS) analysis of modified tryptic peptides of human Hb chains. The reactive sites of human Hb towards SO were identified through characterisation of alkylated tryptic peptides by matrix-assisted laser desorption/ionisation with tandem mass spectrometry (MALDI-MS/MS). A procedure was set up based on this characterisation, allowing Hb modification to be assessed by monitoring SO/Hb adducts using HPLC with selected ion recording (SIR) mass spectrometry. By this methodology it was also possible to compare advantages and disadvantages of presently available strategies for the measurement of Hb adducts with SO. The results obtained could most plausibly lead to the optimisation of molecular dosimetry of SO adducts, and the analytical procedure described herein could be applied to the biological monitoring of styrene exposure in the workplace.  相似文献   

15.
Recombinant monoclonal antibodies (MAbs) can be heterogeneous due to modifications that can occur during expression, purification or during storage. These large multichain proteins (~150 kDa) are structurally challenging for detailed characterization to identify the sites of modifications. We report the use of LTQ Orbitrap mass spectrometry to accurately measure the average masses of individual glycoforms by direct infusion of an intact antibody. To identify the site‐specific modification of methionines in the antibody caused by forced oxidation, we used a ‘middle‐down’ approach. The antibody was subjected to limited digestion using the endoproteinase Lys‐C and reduced to generate Fab heavy chain, single chain Fc and light chain fragments (~25 kDa each). These species were subjected to on‐line liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) analysis using an LTQ Orbitrap, where these large precursors were dissociated by higher‐energy collisions in the C‐trap. High resolution and accuracy achieved for resulting fragments allowed us to show in a site‐specific manner that only the methionines in the Fc heavy chain were oxidized under the studied conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Cardiac troponin I (cTnI) is an important regulatory protein in cardiac muscle, and its modification represents a key mechanism in the regulation of cardiac muscle contraction and relaxation. cTnI is often referred to as the “gold-standard” serum biomarker for diagnosing patients with acute cardiac injury since it is unique to the heart and released into the circulation following necrotic death of cardiac tissue. The swine (Sus scrofa) heart model is extremely valuable for cardiovascular research since the heart anatomy and coronary artery distribution of swine are almost identical to those of humans. Herein, we report a comprehensive characterization of the modifications in swine cTnI using top-down high-resolution tandem mass spectrometry in conjugation with immunoaffinity chromatography purification. High-resolution high accuracy mass spectrometry revealed that swine cTnI affinity purified from domestic pig hearts was N-terminally acetylated and phosphorylated. Electron capture disassociation is uniquely suited for localization of labile phosphorylations, which unambiguously identified Ser22/Ser23 as the only basally phosphorylated sites that are well-known to be regulated by protein kinase A and protein kinase C. Moreover, a combination of tandem mass spectrometry with sequence homology alignment effectively localized a single amino acid polymorphism, V116A, representing a novel genetic variant of swine cTnI. Overall, our studies demonstrated the unique power of top-down high-resolution tandem mass spectrometry in the characterization of protein modifications, including labile phosphorylation and unexpected sequence variants.  相似文献   

17.
A strategy for rapidly identifying the number and sites of chemical or posttranslational modification of proteins is described. The use of matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry to determine the molecular weight of the adducted protein as well as map the proteolytic digest of peptides offers a rapid method to screen for the possible site of adduction. To unequivocally determine the amino acid sequence of the peptide bearing the adduct as well as structurally characteize the covalent modification, the peptide mixture is subjected to membrane preconcentration-capillary electrophoresis-mass spectrometry and tandem mass spectrometry (mPC-CE-MS/MS). The high resolving separation capability of capillary electrophoresis (CE) afford a chromatograhic step that lends itself to separation of complex mixtures of peptides with minimal sample loss. The membrane preconcentration-CE cartridge allows sample loading volumes 10,000-fold greater than conventional CE. In this work the binding site of the fluorescent label acrylodan to the intestinal fatty binding protein is characterized and shown to be covalently bound at lysine-27, by using mPC-CE-MS/MS.  相似文献   

18.
The fragmentation mechanism of six alkaloids, namely: dihydronitidine, dihydrochelerythrine, 8-acetonyldihydronitidine, 8-acetonyldrochelerythrine, nitidine and 1,3-bis(8-dihydronitidinyl)acetone, was investigated by electrospray ionization multi-stage tandem mass spectrometry (ESI-MSn). Tandem mass spectrometry experiments indicated that different substitution sites of the methoxyl groups at C-9 and C-10 or at C-10 and C-11 determined the different abundances of the MS2 fragmentation ions using the same collision energy. According to the different abundances of MS2 product ions, positional isomeric benzo[c]phenanthridine alkaloids can be differentiated. Moreover, ten constituents in the crude alkaloidol extract from the roots of Zanthoxylum nitidium were rapidly identified by high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC/MSn), through comparing the retention times and ESI-MSn spectra with the authentic standards. This work demonstrates that not only the characteristic fragments but also the characteristic abundances of the fragment ions can be used for detailed structural characterization.  相似文献   

19.
Citrullination is a post-translational modification (PTM) that results from the deimination of the amino acid arginine into citrulline by Peptidyl Arginine Deiminase enzymes and occurs in a wide range of proteins in health and disease. This modification causes a 1 Da mass shift, which can be used to identify citrullination sites in proteins by the use of mass spectrometry. However, other PTMs, such as deamidation from asparagine to aspartic acid or from glutamine to glutamic acid, can also cause a 1 Da mass shift, making correct interpretation of the data more difficult. We developed a chemical tagging strategy which, combined with an open source search application, allowed us to selectively pinpoint citrullinated peptides in a complex mixture after liquid chromatography/mass spectrometry (LC/MS) analysis. After incubation of a peptide mixture with 2,3 butanedione, citrulline residues were covalently modified which resulted in a 50 Da shift in singly charged mass. By comparison of the peptide mass fingerprint from a modified and an unmodified version of the same sample, our in-house search application was able to identify the citrullinated peptides in the mixture. This strategy was optimized on synthetic peptides and validated on a digest of in vitro citrullinated fibrinogen, where different proteolytic enzymes were used to augment the protein coverage. This new method results in easy detection of citrullinated residues, without the need for complex mass spectrometry equipment.  相似文献   

20.
Biological mass spectrometry has been developed for the large-scale protein identification. The successful identification of protein in proteomic study is based on an effective match of MS data to the sequence in database. At times, because of the diversity and heterogeneity of protein modification, the experimental data obtained by mass spectrometry does not match the theoretical value; hence, approximately 90 percent or more of the tandem mass spectra cannot be identified effectively. This has become one of the most important technique issues to be resolved in current proteome research. The N-terminal cyclization of peptides, as one of a variety of modification introduced in sample preparation, has been preliminarily studied in this work. The result showed that N-terminal cyclization occurred in most of the glutamine (Q) or carbamoylmethyl-cysteine (CAM_C) residues, and the reaction is often incomplete or partial; both types of peptides can often exist in its respective state at the same time, and the behavior of modified peptides in reversion phase chromatography is changed. The success rate of protein identification could be obviously improved by the addition of the N-terminal cyclization modification in the database searching. These results will be very helpful in the mass spectrometric data analysis of proteomic study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号