首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
采用共沉淀法制备了MnOx-CeO2-WO3-ZrO2催化剂,考察了催化剂焙烧温度对O2和H2O存在下NH3选择性催化还原(NH3-SCR) NO的影响,并利用低温N2吸附、X射线衍射(XRD)、透射电镜(TEM)、X射线光电子能谱(XPS)、NH3程序升温脱附(NH3-TPD)和CO脉冲反应对催化剂进行了表征. 结果表明在NH3-SCR反应中,催化剂的低温活性随焙烧温度的提高而降低,这是由于催化剂表面化学吸附氧和酸性位减少引起的;催化剂的高温活性随焙烧温度的提高先增加后减小,这与催化剂表面最易释放氧数量的变化趋势相反. 700 ℃焙烧的催化剂具有良好的低温活性和最宽的反应温度窗口,在空速为90000 h-1的条件下,该催化剂的起燃温度(50% NO转化率)为189 ℃,且反应温度在218-431 ℃范围内,NO转化率可达到80%-100%.  相似文献   

2.
以MnOx为活性组分, CeO2为助剂, ZrO2-TiO2为载体制备了MnOx-CeO2/ZrO2-TiO2整体式催化剂,考察了焙烧温度对该催化剂上NH3低温选择性催化还原反应(NH3-SCR)的影响. 通过X射线衍射、比表面积测定、储氧量测定和X射线光电子能谱等手段对催化剂进行了表征. 结果表明,催化剂的织构性能和储氧量对低温NH3-SCR反应有较大的影响,活性组分锰以+3价和+4价共存时具有最好的低温活性. 该催化剂经600 ℃焙烧后,在空速为 36?000 h-1 时,反应有最低的起燃温度160 ℃和很宽的反应温度窗口176~393 ℃(转化率为60%~95%). 该催化剂在固定源,尤其在移动源柴油车上催化净化氮氧化物具有良好的应用前景.  相似文献   

3.
以MnO2为活性组分, Fe2O3为助剂, 制备了以TiO2及ZrO2-TiO2为载体的整体式催化剂. 考察了它们在不同温度焙烧后应用于富氧条件下, NH3选择性催化还原(NH3-SCR)氮氧化物的低温反应性能和高温稳定性. 用X射线衍射(XRD)实验、比表面积测定(BET)、储氧性能测定(OSC)及程序升温还原(H2-TPR)等方法对催化剂进行了表征. 结果表明, 以ZrO2-TiO2为载体的催化剂具有很好的高温热稳定性, 并具有较高的比表面积和储氧能力, 同时具有较强的氧化能力. 催化剂的活性测试结果表明, 以ZrO2-TiO2为载体的整体式锰基催化剂明显地提高了NH3-SCR反应的低温活性, 具有良好的应用前景.  相似文献   

4.
以MnO2为活性组分,Fe2O3为助剂,制备了以TiO2及ZrO2-TiO2为载体的整体式催化剂.考察了它们在不同温度焙烧后应用于富氧条件下,NH3选择性催化还原.(NH3-SCR)氮氧化物的低温反应性能和高温稳定性.用X射线衍射(XRD)实验、比表面积测定(BET)、储氧性能测定(OSC)及程序升温还原(H2-TPR)等方法对催化剂进行了表征.结果表明,以ZrO2-TiO2为载体的催化剂具有很好的高温热稳定性,并具有较高的比表面积和储氧能力.同时具有较强的氧化能力.催化剂的活性测试结果表明,以ZrO2-TiO2为载体的整体式锰基催化剂明显地提高了NH3-SCR反应的低温活性,具有良好的应用前景.  相似文献   

5.
以ZrO2-TiO2为载体,MnOx-CeO2为活性组分,WO3为助剂制备了MnOx-CeO2/WO3/ZrO2-TiO2整体式催化剂,考察了添加不同质量分数的WO3对低温氨选择性催化还原(NH3-SCR)氮氧化物反应性能的影响.通过低温N2吸附-脱附,X射线衍射(XRD),X射线光电子能谱(XPS),NH3程序升温脱附(NH3-TPD)等手段对催化剂进行表征.实验结果表明,与未添加WO3的催化剂相比,含有10.0%(w)WO3的催化剂具有较好的织构性能,且具有较多的中强酸位,较好的氧化性能,表现出良好的NH3-SCR活性和较宽的活性温度窗口(空速为10000h-1时,在144-374℃之间,NOx转化率为90%以上),该催化剂在低温净化氮氧化物中具有潜在的应用前景.  相似文献   

6.
主要考察了NO2对Cu/SAPO-34分子筛催化剂在整个温度范围内(100-500°C)NH3选择性催化还原(SCR)NO性能的影响.研究所使用样品为新鲜Cu/SAPO-34催化剂在750°C下水热处理4 h的稳定期样品.通过X射线衍射(XRD)和扫描电子显微镜(SEM)对样品的结构以及形貌进行表征,采用SCR活性评价、动力学实验以及原位漫反射傅里叶变换红外光谱(in situ-DRIFTS)表征催化剂的性能以及催化剂表面物种的变化.活性评价实验结果表明,NO2会抑制催化剂的低温(100-280°C)活性,但其存在会提高催化剂的高温(280°C以上)活性.与此同时,随着反应物中NO/NO2的摩尔比例减少,由于NH4NO3物种的分解,副产物(N2O)的浓度增大.动力学结果表明,Cu/SAPO-34催化剂上快速SCR反应的表观活化能(Ea=64.02 kJ?mol-1)比标准SCR反应的表观活化能(Ea=48.00 kJ?mol-1)更大.In situ-DRIFTS实验结果表明NO比NO2更容易在催化剂表面形成硝酸盐,并且NO2更容易与吸附在Br?nsted酸性位上的NH3物种反应生成NH4NO3.低温下,催化剂表面的NH4NO3物种会覆盖SCR反应的活性位,造成活性降低,但在高温时,形成的NH4NO3物种一部分会被NO还原为N2,而另一部分会直接热分解为N2O,造成催化剂的选择性降低.  相似文献   

7.
采用共沉淀法制备了TiO2、Ti0.5Zr0.5O2(TZ)和Ti0.25Zr0.25Al0.5O1.75载体材料,并以MnO2和CeO2为活性组分,以T、TZ和TZA为载体,制备了3种整体式催化剂.对催化剂进行了低温N2吸附脱附、储氧量(OSC)、NH3-TPD和XPS的表征,并研究了3种催化剂在过量O2存在下的低温NH3-选择催化还原(NH3-SCR)活性及其抗H2O和SO2性能.结果指出,MnO2-CeO2/Ti0.25Zr0.25Al0.5O1.75(TZAC)有最大的比表面积、孔容和储氧能力、最强的表面酸性和最大的表面酸量.而这对选择催化还原(SCR)反应至关重要.活性测试结果指出,TZAC有最好的低温SCR活性和最宽的活性温度窗口.NO在102℃起燃(转化率为50%),在175~325℃之间NO转化率接近100%,而且TZAC表现出了较强的抗H2O和SO2性能.  相似文献   

8.
李哲  高蕊蕊 《分子催化》2015,(6):563-574
分别采用共沉淀法和浸渍法、不同铁前驱物以及不同焙烧温度等研究了制备工艺对Mn-Fe/ZSM-5催化剂的结构、化学组分及NH3-SCR活性的影响。结果显示,当采用Fe(NO3)3作为Fe前驱物,并用共沉淀法制备、300°C焙烧条件下得到的MFZ-CP-N-300样品低温活性最优,在120°C时,其NO的转化率达到96.7%,120-300°C范围内NO转化率始终保持在95%以上。同时利用XRD、NH3-TPD、XPS、SEM、TEM、氮吸附等手段对催化剂结构、晶相、酸位、锰铁氧化物的化学形态及表面的形貌特征进行表征分析。结果表明锰铁氧化物分别以MnO2-Mn2O3和Fe2O3的形式高度分散于催化剂表面,特别是当Mn4+/Mn3+比例为1.254时,有较强的表面中强酸和较多的酸位数,从而增加了NH3的吸附能力,提高NO的转化率。  相似文献   

9.
改性ZrO2-MnO2基整体式催化剂上NH3选择性催化还原NO   总被引:1,自引:0,他引:1  
采用共沉淀法制备了ZrO2-MnO2催化剂,考察了CeO2,MoO3和WO3的添加对ZrO2-MnO2整体式催化剂上NH3选择性催化还原(NH3-SCR)NOx的影响,并利用低温N2吸附-脱附、X射线衍射、X射线光电子能谱、NH3和NO程序升温脱附等方法对催化剂进行了表征,结果表明催化剂物相为Mn0.2Zr0.8O1....  相似文献   

10.
采用高温固相反应法、Pechini合成方法和柠檬酸配位法,制备了系列锂锰复合氧化物LiMn2O4催化剂,应用于NH3-SCR反应,并与固相反应法合成的MnO2进行了比较。采用N2吸附-脱附、扫描电镜、X射线衍射、H2程序升温还原、NH3程序升温脱附、NO程序升温脱附和X射线光电子能谱对LiMn2O4催化剂进行表征。结果表明,引入Li有利于提高锰基催化剂的SCR活性和抗硫性。Pechini法制备LiMn2O4的NO转化率可在130~260℃达到90%以上;固相反应法制备LiMn2O4的NO转化率大于90%的温度为90~310℃;MnO2的温度窗口则仅为140~280℃。与MnO2相比,引入Li可形成LiMn2O4结构,因此,催化剂中更多的锰离子保持在相对较低的价态Mn3+,并调整表面活性氧含量;同时,Li的存在调变了LiMn2O4表面的酸位,从而减少高温下MnO2表面容易发生的NH3非选择性氧化,改善其催化NH3-SCR反应的温度窗口,也增强了抗硫性。  相似文献   

11.
采用等体积浸渍法制备了Mn-Fe/CeO2-TiO2催化剂,考察了不同焙烧温度对其NH3选择性催化还原(SCR)NO活性及催化剂性能的影响。并用N2吸附-脱附,X射线衍射(XRD)和X射线光电子能谱(XPS)等手段对催化剂进行了表征。活性结果表明,随着焙烧温度的升高,Mn-Fe/CeO2-TiO2催化剂的催化活性先升高后降低。其中焙烧温度为500℃时Mn/CeO2-TiO2的NH3-SCR活性最佳,该催化剂在113~250℃之间表现出了良好NO去除效率。表征结果表明,500℃焙烧时,催化剂中Fe和Mn物种在CeO2-TiO2表面的分散效果最好。500℃焙烧时Mn-Fe/CeO2-TiO2表面Mn以+4价存在,Fe以+3、+2价存在,而Ce以+4、+3存在。  相似文献   

12.
焙烧温度对 Pd/Al2O3 催化剂上甲烷燃烧反应性能的影响   总被引:1,自引:0,他引:1  
高典楠  王胜  刘莹  张纯希  王树东 《催化学报》2010,31(11):1363-1368
 考察了载体与催化剂焙烧温度对 Pd/Al2O3 催化剂上低浓度甲烷催化燃烧反应性能的影响. 采用 X 射线衍射、透射电镜、N2 物理吸附、NH3 程序升温脱附和 O2 程序升温氧化等手段对载体和催化剂进行了表征. 结果表明, 焙烧温度对催化剂活性及稳定性的影响显著. 随着载体焙烧温度的升高, Al2O3 的比表面积、物相结构、酸中心的数量及强度明显改变, 相应的 Pd/Al2O3 催化剂中载体与 Pd 的相互作用减弱, Pd 分散度降低. 当载体焙烧温度为 1 100 °C, Pd/Al2O3 焙烧温度为 200 °C 时, 所得催化剂在 260 h 的连续反应中, 甲烷转化率始终维持在 99%以上.  相似文献   

13.
制备了一系列不同Mn/(Mn+Ce)质量比的MnOx-CeO2/WO3-ZrO2整体式催化剂用于富氧条件下的NH3选择性催化还原NOx(NH3-SCR),并采用N2吸脱附、储氧量、X射线衍射、X光电子能谱、NH3/NO程序升温脱附以及H2程序升温还原等手段对催化剂进行表征.结果表明,当Mn/(Mn+Ce)质量比为0.5时,整体式催化剂具有较好的NH3-SCR性能,在空速10000h-1和173~355oC条件反应下,NOx转化率达90%以上.这是由于该MnOx-CeO2/WO3-ZrO2催化剂具有更高的NO氧化活性、更高的表面Ce和Mn原子浓度以及Ce3+/Ce值较低的NH3和NO脱附温度以及优异的氧化还原性能所致.  相似文献   

14.
 采用等体积浸渍法在不同温度下焙烧制备了一系列 MnO2-CeO2/Zr0.25Ti0.25Al0.5O1.75 整体式催化剂样品, 并用低温 N2 吸附-脱附、储氧量、X 射线衍射、X 射线光电子能谱和 NH3 程序升温脱附等对催化剂进行了表征, 考察了催化剂上 NH3 选择性催化还原 (SCR) NO 的活性. 结果表明, 随着焙烧温度的升高, 催化剂的比表面积和孔体积逐渐减小, 平均孔径逐渐增大, 储氧能力逐渐降低. 在 500~700 oC 焙烧时, 催化剂主要以无定形或微晶的形式存在; 在 500 oC 焙烧时, 催化剂表面 Mn 与载体之间的相互作用较强, 表面酸量最高, 有利于提高 SCR 活性. 尽管在 600 和 700 oC 焙烧的催化剂仍具有较高的 SCR 活性, 且表现出一定的抗 H2O 和 SO2 性能, 但活性有所下降. 800 oC 焙烧后催化剂的活性显著降低.  相似文献   

15.
火电厂和机动车辆等的NOx排放量与日俱增,NOx的治理已成为环境保护的重要组成部分.以NH3作为还原剂的选择性催化还原(SCR)技术是目前消除NOx最为高效的方法之一.该反应最为典型的催化剂是V2O5–WO3(MoO3)/TiO2,催化活性窗口为250–400o C.国外通常将SCR系统置于省煤器之后,此时烟气温度在300o C以上,催化剂能保持较高的活性,但易受到烟气中高浓度烟尘、SO2和碱金属等的影响,寿命相对较短.此外,高温工艺中副产物硫酸铵的堵塞也是一个不可忽视的问题.因此,将SCR脱硝装置设在脱硫除尘之后成为一种优选技术之一,但烟气温度会降至250o C以下,而常规的钒基催化剂不能满足低温活性要求.通过添加助剂或改变载体可改善钒基催化剂的低温活性,同时保持其高效的抗硫能力.本文以Cr和V为活性组分,Ti O2为载体,采用浸渍法制备了铬钒钛(Cr–VO x/Ti O2)系列催化剂,考察了它们的低温脱硝活性和抗水抗硫性,并通过N2吸附-脱附、X射线衍射、NH3程序升温脱附(NH3-TPD)、H2程序升温还原(H2-TPR)和X射线光电子能谱等手段对催化剂进行了表征,分析了Cr–V催化剂的作用机制.结果显示,当n(Cr):n(V)为0.2:0.8,活性组分负载量为10 wt%时,Cr–VO x/Ti O2催化剂表现出最佳的低温催化活性;当反应温度为160°C时,NO x转化率达到90%以上,明显优于其他催化剂,同时活性窗口(160–300°C)得到拓宽.NH3-TPD结果表明,VO x/Ti O2催化剂表面呈中弱酸性,随着Cr的添加,钒基催化剂的NH3脱附峰向高温拓宽,说明其表面强酸量有所增加,Cr0.2–V0.8/Ti O2在160–300°C范围内均出现了NH3的脱附峰,此时催化剂表面弱酸量最大.当n(Cr):n(V)大于0.2:0.8时,催化剂表面出现强酸位,这种强酸位不利于NH3脱附,从而不利于SCR反应的进行.因此适量Cr的添加有助于提高钒基催化剂表面弱酸及中性酸量.H2-TPR结果发现,助剂Cr的添加使得催化剂表面氧量增加,这可能是由于Cr的添加形成了较多的氧空穴和未饱和的化学键.催化剂表面化学吸附氧是氧化还原反应最活跃的氧物种,在SCR反应中,表面氧可作为NO的吸附介质参与到催化剂表面反应中,可有效提高SCR反应速率.通过考察活性组分负载量对催化剂活性的影响,发现不同负载量催化剂的催化活性依次为10 wt%20wt%50wt%5wt%.XPS分析发现,当负载量为10 wt%时,催化剂表面非计量的钒离子和化学性质活跃的自由电子最多,因此表现出最佳的SCR活性;当负载量过高时,大量氧化物堆积烧结形成V2O5和Cr2V4O13,覆盖了钒离子活性位点,降低了催化剂脱硝效率.催化剂在220°C表现出良好的抗硫性,在通入100 ppm SO212 h后NOx的转化率仍可达99%以上,并未出现硫中毒现象.同时该催化剂也表现出较好的抗水性,在通入10 vol%水蒸气12 h后,NOx转化率仍能达85%以上.  相似文献   

16.
分别采用共沉淀法和浸渍法、不同铁前驱物以及不同焙烧温度等研究了制备工艺对Mn-Fe/ZSM-5催化剂的结构、化学组分及NH3-SCR活性的影响.结果显示,当采用Fe(NO3)3作为Fe前驱物,并用共沉淀法制备、300℃焙烧条件下得到的MFZ-CP-N-300样品低温活性最优,在120℃时,其NO的转化率达到96.7%,120~300℃范围内NO转化率始终保持在95%以上.同时利用XRD、NH3-TPD、XPS、SEM、TEM、氮吸附等手段对催化剂结构、晶相、酸位、锰铁氧化物的化学形态及表面的形貌特征进行表征分析.结果表明锰铁氧化物分别以Mn O2-Mn2O3和Fe2O3的形式高度分散于催化剂表面,特别是当Mn4+/Mn3+比例为1.254时,有较强的表面中强酸和较多的酸位数,从而增加了NH3的吸附能力,提高NO的转化率.  相似文献   

17.
商业选择性催化还原(SCR)催化剂成分主要有 V2O5, WO3和 TiO2,但适用温度窗口较窄(300?400℃),使得实际操作过程中活性较低.目前,过渡金属广泛应用于催化剂制备中以提高其催化活性.相比于纯 TiO2和 ZrO2载体, TiO2-ZrO2具有较高的热稳定性以及较多的酸位,虽然有关 TiO2-ZrO2为载体的催化剂研究较多,但未与商业催化剂进行对比研究.而针对 NH3-SCR脱硝机理的实验研究也存在一些争议,主要原因归为以下两方面:(1)多数催化剂不同会直接导致催化剂的活性酸位不同;(2)不同 NH3-SCR脱硝催化剂的起活温度不同.同时, NH3和 NO在反应温度的吸附情况仍需要进一步研究.因此,有必要深入探究 NH3-SCR脱硝机理,以解决现行研究中存在的问题.本文首先采用共沉淀法制备摩尔比为1:1的 TiO2-ZrO2固溶体,并分步浸渍不同质量比的 WO3和1%V2O5,最终得到一系列1%V2O5-x%WO3/TiO2-ZrO2.然后通过 X射线衍射(XRD)和比表面积测试(BET)、程序升温还原(TPR)、原位漫反射红外光谱(in situ DRIFTS)研究了 WO3和 ZrO2对催化性能的影响以及 V2O5-WO3/TiO2-ZrO2催化剂的反应机理. N2物理吸附结果表明, WO3的添加使得催化剂孔结构的热稳定性有所提高,同时随着 WO3含量增加催化剂的比表面积逐渐减小,但仍高于 V2O5/TiO2-ZrO2催化剂; ZrO2对催化剂比表面积增大效果比较明显.结合 XRD结果表明, WO3能促进金属氧化物在载体上的分散;相比于 V2O5-WO3/TiO2催化剂, ZrO2有利于活性组分的分散负载.比较系列 V2O5-x%WO3/TiO2-ZrO2的氨吸附情况,发现 WO3的添加增加了 Br?nsted酸的稳定性,其中以9%WO3的效果最显著.催化剂氨吸附中间物种(–NH2)的发现,证实了 WO3添加促进了 NH3的活化,有利于脱硝反应的进行. SCR反应结果显示, V2O5-9%WO3/TiO2-ZrO2催化剂在300–450oC时 NOx转化效率最优,并发现 O2的存在促进了 NOx的转化.采用in situ DRIFTS研究了 V2O5-x%WO3/TiO2-ZrO2催化剂脱硝机理,300和350oC时 NH3, NO, NO + O2吸附情况表明,在真实的反应温度下,脱硝过程中的活性中心为 Lewis酸中心, Br?nsted酸中心的 NH4+极易从催化剂表面脱附,无法吸附在催化剂表面,且与 NH3相比, NO只能以 NO2的形式弱吸附在催化剂表面.因此,该催化剂遵循 Eley-Ridel脱硝机理.而 V2O5-9%WO3/TiO2-ZrO2催化剂具有相对较高的脱硝效率,因此用来着重研究 NH3-SCR机理.在 NH3吸附过程中, NH3(1204,1602,3156,3264,3347 cm?1)和活性中产物 NH2(1550 cm?1)在催化剂表面的吸附(恒温300oC)是稳定的;随后通入 NO + O2时, NH3吸附过程中的所有吸收峰(包括 NH2)均逐渐减小(NH3吸附态与 NO结合后分解为 N2和 H2O),同时出现 H2O的振动峰,这证明了 V2O5-x%WO3/TiO2-ZrO2催化剂的脱硝反应过程.各类气体吸附情况表明, NO在商业催化剂的吸附状态与 V2O5-x%WO3/TiO2-ZrO2催化剂相同;但 NH3吸附结果表明, Br?nsted酸中心和 Lewis酸中心都是催化剂的活性中心; NO + O2的通入使得催化剂表面的 NH3和 NH4+都逐渐消失.这两种催化剂脱硝反应过程差异主要在于催化剂表面活性中心的不同,导致了不同的 NOx脱除路径.通过in situ DRIFTS比较 O2的存在对脱硝反应产生的不同影响来确定 O2的作用.两类催化剂上 O2均参与了 H2O的形成,促进了催化反应的完成;当 O2不存在时, NO的还原受到了极大地抑制,同时也未出现 H2O;两者的脱硝效率大大降低. H2-TPR和 NH3-TPR结果进一步证实 O2的作用主要是氧化 NO及参与催化过程 H2O的形成.  相似文献   

18.
用高锰酸钾与硝酸锰氧化还原反应制备了高活性的氧化锰(MnO x)催化组分,用胶溶法制备了高比表面积的γ-Al2O3载体,分别用等体积浸渍法制备了Pd/MnO x和Pd/γ-Al2O3催化剂,然后将两者机械混合涂覆于堇青石上制得Pd/MnO x+Pd/γ-Al2O3整体式催化剂。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、程序升温还原(H2-TPR)和低温N2吸附-脱附对催化剂进行了表征。考察了在300至700℃焙烧MnO x对催化剂降解地表O3活性的影响。结果表明,Pd和MnO x之间存在协同作用;MnO x焙烧温度对催化剂活性有一定的影响,其中以600℃焙烧时催化剂的活性最高,O3的起始(12℃)转化率达到88%,完全转化温度为18℃。MnOx的物相和催化剂表面的吸附氧物种对催化活性影响较大,适当比例的MnO2和Mn2O3共存有利于O3分解,表面吸附氧为O3分解的活性氧物种。  相似文献   

19.
选择性催化还原(SCR)是目前去除氮氧化物最有效的方法之一. V2O5/TiO2催化剂被广泛应用于氨法选择性还原氮氧化物(NH3-SCR)反应,但该催化剂存在工作温度高(300–400oC)及 SO2氧化率高引起设备腐蚀和管路堵塞等问题,开发低温 SCR催化剂具有重要意义.过渡金属氧化物(如 Fe2O3, MnOx和 CuO等)催化剂用于低温SCR先后见诸文献报道,但这些催化剂在 SO2和 H2O存在下易失活.近年来柱撑黏土(PILC)引起科学家广泛关注, Yang等首次将 V2O5/TiO2-PILC催化剂应用于 NH3-SCR反应,发现其催化活性高于传统 V2O5/TiO2催化剂.柱撑黏土基催化剂在 NH3-SCR反应中也显示出良好抗硫性能,但 V2O5/TiO2-PILC催化剂的抗硫机理至今尚未见深入研究.因此我们制备了一系列 V2O5/TiO2-PILC催化剂,采用原位漫反射红外等方法详细研究了其抗硫性能较好的原因.
  首先采用离子交换法制备出 TiO2-PILC载体,之后采用浸渍法制备了不同钒含量(质量分数x/%=0,3,4,5)的xV2O5/TiO2-PILC催化剂.同时,制备了传统 V2O5/TiO2和 V2O5-MoO3/TiO2催化剂作为对比.活性评价结果显示,4V/TiO2-PILC催化剂具有最高的催化活性,其催化性能与传统钒钛催化剂相当.在160oC时, NO转化率可达80%以上.同时,4V/TiO2-PILC催化剂还具有较宽的反应温度窗口,在260–500oC范围内, NO转化率保持在90%以上.向反应体系中加入0.05% SO2和10% H2O后,在低温(160oC以下)时所有催化剂的反应活性都有一定提高,可能是由于 SO2的加入提高了催化剂的表面酸性.继续升高温度,4V/TiO2和4V6Mo/TiO2催化剂活性均明显下降,而4V/TiO2-PILC催化剂的活性则未出现明显下降.原位漫反射红外光谱结果显示, SO2在三种催化剂表面的吸附以表面硫酸盐或亚硫酸盐物种以及离子态 SO42–物种形式存在,而在4V/TiO2-PILC催化剂表面离子态 SO42–物种的量最少. X射线光电子能谱及 O2程序升温脱附结果显示,在4V/TiO2-PILC催化剂上,表面吸附氧(Oads)的量最少.综合上述分析可以得出,在 SO2气氛下,离子态 SO42–物种在 SCR催化剂表面的累积可能是导致其失活的主要原因,而离子态 SO42–物种的形成可能与催化剂表面吸附氧的量有关.  相似文献   

20.
 以机械混合法、浸渍法和共沉淀法分别制备了4%Ni-Al2O3催化剂,并用X射线衍射、程序升温还原、紫外-可见漫反射光谱和N2吸附等方法对催化剂的体相和表面结构进行了表征,系统考察了制备方法及焙烧温度对Ni-Al2O3催化剂催化丙烷选择性还原NO性能的影响. 结果表明, Ni-Al2O3中存在NiO和NiAl2O4两种镍相,前者是丙烷氧化活性中心,后者是NO选择性催化还原的活性中心. 共沉淀法制备的催化剂活性最好, 550 ℃焙烧的Ni-Al2O3催化剂在反应温度为450和500 ℃时NO转化率接近100%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号