首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vulcanization is a vital process in rubber processing, it endows rubber with valuable physical and mechanical properties, making rubber a widely used engineering material. In addition to vulcanization agent, reinforcing fillers play a non-ignorable influence on the vulcanization of rubber nanocomposites. Herein, the effects of cellulose nanocrystals (CNCs) on the vulcanization of natural rubber (NR)/CNCs nanocomposite was studied. It was found that even though the addition of CNCs can effectively improve the dispersion of ZnO in NR matrix, the vulcanization of NR was inhibited. This may be attributed to the CNCs' adsorption of vulcanizing agents (DM, ZnO) and the acidic chemical environment on the surface of CNCs. In order to improve the vulcanization properties of NR/CNCs nanocomposite, tetramethyldithiochloram (TMTD) and triethanolamine (TEOA) were used as a combination accelerator and curing activator, respectively, and polyethylene glycol (PEG) was introduced to screen hydroxyl groups on the surface of CNCs to prohibit the CNCs' adsorption of vulcanizing agents. The results indicate that TMTD and TEOA effectively improved the vulcanization rate of NR/CNCs nanocomposite and increased the crosslink density by an order of magnitude. Subsequently, the tensile strength, tear strength, and so forth. of NR/CNCs nanocomposite were significantly improved. However, PEG hardly help to improve the vulcanization properties of NR/CNCs nanocomposite. In addition, the control samples without CNCs were prepared and characterized, the comparation between NR and NR/CNCs nanocomposite shows that the synergistic effect of crosslink density and CNCs' reinforcement more effectively improve mechanical properties of NR. This work not only elucidates the inhibiting mechanisms of CNCs on the vulcanization of NR, but also provides practical strategies for improving the vulcanization and properties of NR/CNCs nanocomposite. It may accelerate the application of CNCs as rubber reinforcing filler.  相似文献   

2.
Cellulose whiskers and microfibrillated cellulose (MFC) were extracted from the rachis of date palm tree and characterized. These cellulosic nanoparticles were used as reinforcing phase to prepare nanocomposite films using latex of natural rubber as matrix. These films were obtained by the casting/evaporation method. The properties of the ensuing nanocomposite films were investigated using differential scanning calorimetry, toluene and water uptake experiments, dynamic mechanical analysis and tensile tests. The stiffness of the natural rubber was significantly increased above its glass-rubber transition temperature upon nanoparticles addition. The reinforcing effect was shown to be higher for nanocomposites with MFC compared to whiskers. It was ascribed to the higher aspect ratio and possibility of entanglements of the former. The presence of residual lignin, extractive substances and fatty acids at the surface of MFC was also suggested to promote higher adhesion level with the polymeric matrix.  相似文献   

3.
Cellulose nanofibrils (CNF) were isolated from cotton microfibrils (CM) by acid hydrolysis and coated with polyaniline (PANI) by in situ polymerization of aniline onto CNF in the presence of hydrochloride acid and ammonium peroxydisulfate to produce CNF/PANI. Nanocomposites of natural rubber (NR) reinforced with CNF and CNF/PANI were obtained by casting/evaporation method. TG analyses showed that coating CNF with PANI resulted in a material with better thermal stability since PANI acted as a protective barrier against cellulose degradation. Nanocomposites and natural rubber showed the same thermal profiles to 200 °C, partly due to the relatively lower amount of CNF/PANI added as compared to conventional composites. On the other hand, mechanical properties of natural rubber were significantly improved with nanofibrils incorporation, i.e., Young’s modulus and tensile strength were higher for NR/CNF than NR/CNF/PANI nanocomposites. The electrical conductivity of natural rubber increased five orders of magnitude for NR with the addition of 10 mass% CNF/PANI. A partial PANI dedoping might be responsible for the low electrical conductivity of the nanocomposites.  相似文献   

4.
《先进技术聚合物》2018,29(5):1507-1517
Water‐induced mechanically adaptive rubber nanocomposites were prepared by mixing bacterial cellulose whiskers (BCWs) suspension with styrene‐butadiene rubber (SBR) latex, followed by evaporation method. The structure, morphology, dynamic mechanical properties, water stimuli‐responsive behavior, and biodegradability of SBR/BCWs nanocomposite films were investigated. The results showed that the hydrophilic whiskers had a significant reinforcement effect on the storage modulus of SBR matrix, which originated from the formation of a rigid three‐dimensional filler network within matrix by strong hydrogen bonding between whiskers. The SBR/BCWs nanocomposites showed pronounced water stimuli‐responsive behavior compared with neat SBR. The storage modulus of SBR/BCWs nanocomposite could be decreased by 99.2% after equilibrium water swelling. This remarkable water‐triggered modulus change is attributed to the disentanglement of BCWs network via competitive hydrogen bonding with water.  相似文献   

5.
Polyacrylamide (PAM) was used as a matrix material for fabricating novel nanocomposite hydrogels reinforced with natural chitosan nanofibers (CNFs) via in situ free-radical polymerization. The nanocomposite's structure, strength, morphology and rheological properties were investigated. The results showed that the CNFs had a strong interaction with PAM through hydrogen and covalent bondings. The CNFs acted as a multifunctional cross-linker and a reinforcing agent in the hydrogel system. The compression strength and storage modulus of the nanocomposite hydrogels were significantly higher than those of the pure PAM hydrogels and the corresponding PAM/chitosan semi-interpenetrating polymer network (PAM-SIPN) hydrogels. The swelling ratio (SR) of the nanocomposite hydrogels was lower than that of the PAM hydrogel, but was similar to that of the PAM-SIPN hydrogel. Among the CNF contents used, the 1.5 wt% CNF loading level showed the best combined swelling and mechanical properties for the hydrogels.  相似文献   

6.
Green all-cellulose nanocomposites were fabricated by adding reinforcing cellulose nanofiber (CNF) to a matrix of dissolved cellulose. CNFs were isolated from one dried native hardwood bleached Kraft pulp and office waste recycled deinked copy/printing paper (DIP) by using the TEMPO oxidation method. The cellulose was dissolved by using DIP and DMAc/LiCl solvent without heat treatment and solvent exchange to form a matrix of the all-cellulose nanocomposites. The DIP was not only selected for CNF isolation, but also for the cellulose matrix. The isolated CNFs and the all-cellulose nanocomposites were characterized by atomic force microscopy, thermogravimetry–differential thermal analysis, X-ray diffraction and mechanical tensile testing. The green all-cellulose nanocomposites made without heat treatment offered better thermal stability, crystallinity and mechanical properties than the heat treated ones. CNFs isolated from two resources show similar reinforcement capacity in all-cellulose nanocomposites. All-cellulose nanocomposite fabrication by dissolving cellulose without heat treatment and solvent exchange is a simple way that saves energy and chemicals.  相似文献   

7.
采用酸水解工业微晶纤维素(MCC)制备纳米微晶纤维素(NCC),将其与天然胶乳共凝沉,混炼时加入炭黑(CB),制备了天然橡胶(NR)/NCC/CB复合材料,研究了NR/NCC/CB和NR/NCC/CB/RH(间苯二酚-六亚甲基四胺络合物)复合材料的力学性能和动态性能,并与NR/CB体系的性能进行对比.结果表明NCC可以均匀分散在天然橡胶基体中,且依拉伸方向取向,随着NCC替代炭黑的份数增加,Payne效应减弱,说明NCC本身并不构成强的填料网络,NR/NCC/CB与NR/CB比较,前者整体的网络化程度减弱,体系的损耗因子变化不大,NCC的加入改善了NR/CB的力学性能和抗屈挠龟裂性能,降低压缩疲劳温升和压缩永久形变,当NCC取代5~20 phr CB后,仍然保持高耐磨炭黑补强天然橡胶的耐磨耗性能.动态力学性能显示NR/NCC/CB的玻璃化转变温度较NR/CB变化不大,0℃的tanδ略有下降的同时60℃的tanδ明显降低.NR/NCC/CB/RH体系的Payne效应较NR/NCC/CB明显减弱,力学性能、抗屈挠龟裂性能和耐磨耗性能进一步改善,体系的压缩疲劳温升和压缩永久形变更小.  相似文献   

8.
Due to the importance in economic and environmental benefits, marine biomass has gained increasing attention in recent years. In this work, marine biomass-based materials were prepared and characterized. Highly reinforcing cellulose nanocrystals (CNCs) with length of 1–2 μm and aspect ratio of ~75 were extracted from tunicates (t-CNCs), and CNCs with length of 100–300 nm and aspect ratio of ~15 from cotton (c-CNCs) were presented for comparison. In order to enhance interfacial interactions between CNCs and rubber, modification of natural rubber (NR) was conducted via epoxidation reaction to obtain epoxidized NR (ENR). Fully bio-based rubber nanocomposites were produced by latex mixing. Compared with NR nanocomposites, hydrogen bonding formed between ENR and CNCs, which led to homogeneous dispersion of CNCs and enhanced interfacial adhesion between them. Moreover, t-CNCs with longer length and larger aspect ratio facilitate filler entanglements, which led to higher reinforcing efficiency. Consequently, both hydrogen bonding and filler entanglements contributed to the improved mechanical properties of ENR/t-CNCs nanocomposites.  相似文献   

9.
The latex blending method was chosen to prepare Kaolinite/emulsion-polymerization styrene butadiene rubber (ESBR) nanocomposite to improve the interaction between filler particles and rubber matrix chains. The influences of kaolinite particles size, filler contents, and flocculants types on dynamic mechanical properties and the relative reinforcement mechanism of the prepared composite were systematic investigated and proposed. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed that the kaolinite particles were finely dispersed into the rubber matrix and arranged in parallel orientation. The prepared nanocomposites by latex blending exhibited improved crosslinking characteristic and dynamic mechanical parameters. The KAl (SO4)2 flocculant presented obvious modification in dynamic properties and crosslinking characteristic. Both the decrease in kaolinite particle size and the increase in kaolinite content can greatly improve the storage modulus and reinforcing effect of kaolinite/ESBR nanocomposites. The dynamic reinforcement mechanism of kaolinite can be explained by filler network including a certain thickness of rubber shell on the surface of kaolinite lamellar structure and the aggregations network between kaolinite particles The optimum way to balance the dynamic properties of rubber nanocomposites at different temperatures is to reduce the surface difference between kaolinite and rubber matrix and the degree of filler-filler networking on the basis of kaolinite with nanoscale (nanometer effect).  相似文献   

10.
采用胶乳接枝插层法,引入单体,制备了天然橡胶蒙脱土聚丙烯酸丁酯纳米复合材料.X射线衍射(XRD)和透射电镜(TEM)结果表明,在单体丙烯酸丁酯(BA)的作用下,改性蒙脱土片层被进一步撑大,并在橡胶基体中以纳米级分散;动态粘弹谱(DMA)测定结果显示,该体系的玻璃化温度有所提高,且60℃时具有较低的tanδ值,说明具有较小的滚动阻力;物理机械性能测试表明该方法有效地实现了对天然橡胶的补强.  相似文献   

11.
The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.  相似文献   

12.
Starch nanocrystals obtained from acid hydrolysis of waxy maize starch granules consist in crystalline nanoplatelets about 6–8 nm thick with a length of 20–40 nm and a width of 15–30 nm. New nanocomposite materials, i.e. natural rubber (NR) filled with waxy maize starch nanocrystals were processed by casting. Dynamic mechanical analysis has shown that starch nanocrystals were a good reinforcing agent for NR at temperatures higher than the glass transition temperature of NR. Tensile tests have shown that until a weight fraction of 20 wt%, this new filler presented the advantage to reinforce natural rubber without decreasing significantly the strain at break of the material. These properties may be due to both the morphological nature of starch nanocrystals, and the formation of a percolating starch nanocrystals network within the NR matrix, resulting from hydrogen bonding forces between starch aggregates.  相似文献   

13.
Methyl methacrylate (MMA) can be grafted onto natural rubber (NR) in latex by gamma irradiation for improving the mechanical properties of the dry films. Physical blending of MMA-grafted NR latex with radiation vulcanized natural rubber latex (RVNRL) or simultaneous radiation grafting and crosslinking are found to be useful techniques for improving the properties of latex films. Moduli of the films are improved with increasing MMA content; however, tensile strength is reduced. High modulus without much reduction in tensile strength can be achieved if the MMA content is 50–60 parts per hundred rubber.  相似文献   

14.
Polymer nanocomposites were prepared from poly(oxyethylene) PEO as the matrix and high aspect ratio cellulose whiskers as the reinforcing phase. Nanocomposite films were obtained either by extrusion or by casting/evaporation process. Resulting films were characterized using microscopies, differential scanning calorimetry, thermogravimetry and mechanical and rheological analyses. A thermal stabilization of the modulus of the cast/evaporated nanocomposite films for temperatures higher than the PEO melting temperature was reported. This behavior was ascribed to the formation of a rigid cellulosic network within the matrix. The rheological characterization showed that nanocomposite films have the typical behavior of solid materials. For extruded films, the reinforcing effect of whiskers is dramatically reduced, suggesting the absence of a strong mechanical network or at least, the presence of a weak whiskers percolating network. Rheological, mechanical and microscopy studies were involved in order to explain this behavior.  相似文献   

15.
Prevulcanized natural rubber latex/clay aerogel nanocomposites   总被引:2,自引:0,他引:2  
Natural rubber latex (NR)/clay aerogel nanocomposites were produced via freeze-drying technique. The pristine clay (sodium montmorillonite) was introduced in 1-3 parts per hundred rubber (phr) in order to study the effect of clay in the NR matrix. The dispersion of the layered clay and the morphology of the nanocomposites were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Cure characteristics, thermal stability, and the crosslink density of thermal and microwave-cured NR and its composites were investigated. XRD patterns indicated that both intercalated and exfoliated structures were observed at loadings of 1-3 phr clay. SEM studies revealed that the clay aerogel structure was formed at 3 phr clay loading. The increment in Shore A hardness of nanocomposites compared with pure NR signified excellent polymer/filler interaction and the reinforcing effect of the clay to rubber matrix. This was supported by an increase in maximum rheometric torque and crosslink density. The crosslink density of clay-filled NR vulcanizate was found to increase with the pristine clay content in both thermal and microwave curing methods. However, microwave-cured 2 and 3 phr-filled NR vulcanizates exhibited higher crosslink density than those which were thermal-cured under the same curing temperature. In addition, thermal stability studies showed that pristine clay accelerated the decomposition of NR by showing a slight decrease in onset and peak decomposition temperatures along with clay content.  相似文献   

16.
Effects of precipitated silica (PSi) and silica from fly ash (FA) particles (FASi) on the cure and mechanical properties before and after thermal and oil aging of natural rubber (NR) and acrylonitrile–butadiene rubber (NBR) blends with and without chloroprene rubber (CR) or epoxidized NR (ENR) as a compatibilizer have been reported in this paper. The experimental results suggested that the scorch and cure times decreased with the addition of silica and the compound viscosity increased on increasing the silica content. The mechanical properties for PSi filled NR/NBR vulcanizates were greater than those for FASi filled NR/NBR vulcanizates in all cases. The PSi could be used for reinforcing the NR/NBR vulcanizates while the silica from FA was regarded as a semi‐reinforcing and/or extending filler. The incorporation of CR or ENR enhanced the mechanical properties of the NR/NBR vulcanizates, the ENR being more effective and compatible with the blend. The mechanical properties of the NR/NBR vulcanizates were improved by post‐curing effect from thermal aging but deteriorated by the oil aging. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The preparation and characterization of polymer blends with structured natural rubber (NR)-based latex particles are presented. By a semicontinuous emulsion polymerization process, a natural rubber latex (prevulcanized or not) was coated with a shell of crosslinked polymethylmethacrylate (PMMA) or polystyrene (PS). Furthermore, core–shell latexes based on a natural rubber/crosslinked PS latex semi-interpenetrating network were synthesized in a batch process. These structured particles were incorporated as impact modifiers into a brittle polymer matrix using a Werner & Pfleiderer twin screw extruder. The mechanical properties of PS and PMMA blends with a series of the prepared latexes were investigated. In the case of PMMA blends, relatively simple core (NR)–shell (crosslinked PMMA) particles improved the mechanical properties of PMMA most effectively. An intermediate PS layer between the core and the shell or a natural rubber core with PS subinclusions allowed the E-modulus to be adjusted. The situation was different with the PS blends. Only core–shell particles based on NR-crosslinked PS latex semi-interpenetrating networks could effectively toughen PS. It appears that microdomains in the rubber phase allowed a modification of the crazing behavior. These inclusions were observed inside the NR particles by transmission electron microscopy. Transmission electron photomicrographs of PS and PMMA blends also revealed intact and well-dispersed particles. Scanning electron microscopy of fracture surfaces allowed us to distinguish PS blends reinforced with latex semi-interpenetrating network-based particles from blends with all other types of particles.  相似文献   

18.
Nanocomposites of poly(vinyl alcohol) (PVA) reinforced with bacterial cellulose (BC) were bioproduced by Gluconacetobacter genus bacteria. BC was grown from a culture medium modified with water-soluble PVA to allow in situ assembly and production of a novel nanocomposite that displayed synergistic property contributions from the individual components. Chemical crosslinking with glyoxal was performed to avoid the loss of PVA matrix during purification steps and to improve the functional properties of composite films. Reinforcement with BC at 0.6, 6 and 14 wt% content yielded nanocomposites with excellent mechanical, thermal and dimensional properties as well as moisture stability. Young’s modulus and strength at break increased markedly with the reinforcing BC: relative to the control sample (in absence of BC), increases of 15, 165 and 680 % were determined for nanocomposites with 0.6, 6 and 14 % BC loading, respectively. The corresponding increase in tensile strengths at yield were 1, 12 and 40 %, respectively. The results indicate an exceptional reinforcing effect by the three-dimensional network structure formed by the BC upon biosynthesis embedded in the PVA matrix and also suggest a large percolation within the matrix. Bonding (mainly hydrogen bonding) and chemical crosslinking between the reinforcing phase and matrix were the main contributions to the properties of the nanocomposite.  相似文献   

19.
In order to achieve dramatic improvements in the performance of rubber materials, the development of carbon nanotube (CNT)‐reinforced rubber composites was attempted. The CNT/natural rubber (NR) nanocomposite was prepared through solvent mixing on the basis of pretreatment of CNTs. Thermal properties, vulcanization characteristics, and physical and mechanical properties of the CNT/NR nanocomposites were characterized in contrast to the carbon black (CB)/NR composite. Through the addition of the CNTs treated using acid bath followed by ball milling with HRH (hydrated silica, resorcinol, and hexamethylene tetramine) bonding systems, the crystallization melting peak in differential scanning calorimetry (DSC) curves of NR weakened and the curing rate of NR slightly decreased. Meanwhile, the over‐curing reversion of CNT/NR nanocomposites was alleviated. The dispersion of the treated CNTs in the rubber matrix and interfacial bonding between them were rather good. The mechanical properties of the CNT‐reinforced NR showed a considerable increase compared to the neat NR and traditional CB/NR composite. At the same time, the CNT/NR nanocomposites exhibited better rebound resilience and dynamic compression properties. The storage modulus of the CNT/NR nanocomposites greatly exceeds that of neat NR and CB/NR composites under all temperature regions. The thermal stability of NR was also obviously improved with the addition of the treated CNTs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Electron beam (EB)-cross-linked natural rubber (NR) gels were prepared from latex and characterized by various techniques. The addition of a small amount of these gels to raw NR was found to reduce the apparent shear viscosity and die swell remarkably. This effect was further enhanced with the addition of butyl acrylate as a sensitizer. The apparent shear viscosity first decreased up to 8 phr of gel loading and then increased. However, the percent die swell value decreased steadily upon gel loading. These were explained by calculating principal normal stress difference, the activation energy of melt flow and characteristics of EB-cross-linked gels. These effects were also reflected in the changes of mechanical and dynamic mechanical properties of gel-filled raw NR. Tailoring of the above properties could be done with the help of these gels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号