首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electronic spectra of guanine in the gas phase and in water were studied by quantum mechanical/molecular mechanical (QM/MM) methods. Geometries for the excited‐state calculations were extracted from ground‐state molecular dynamics (MD) simulations using the self‐consistent‐charge density functional tight binding (SCC‐DFTB) method for the QM region and the TIP3P force field for the water environment. Theoretical absorption spectra were generated from excitation energies and oscillator strengths calculated for 50 to 500 MD snapshots of guanine in the gas phase (QM) and in solution (QM/MM). The excited‐state calculations used time‐dependent density functional theory (TDDFT) and the DFT‐based multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke, in combination with two basis sets. Our investigation covered keto‐N7H and keto‐N9H guanine, with particular focus on solvent effects in the low‐energy spectrum of the keto‐N9H tautomer. When compared with the vertical excitation energies of gas‐phase guanine at the optimized DFT (B3LYP/TZVP) geometry, the maxima in the computed solution spectra are shifted by several tenths of an eV. Three effects contribute: the use of SCC‐DFTB‐based rather than B3LYP‐based geometries in the MD snapshots (red shift of ca. 0.1 eV), explicit inclusion of nuclear motion through the MD snapshots (red shift of ca. 0.1 eV), and intrinsic solvent effects (differences in the absorption maxima in the computed gas‐phase and solution spectra, typically ca. 0.1–0.3 eV). A detailed analysis of the results indicates that the intrinsic solvent effects arise both from solvent‐induced structural changes and from electrostatic solute–solvent interactions, the latter being dominant. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

2.
Free energies of hydration (FEH) have been computed for 13 neutral and nine ionic species as a difference of theoretically calculated Gibbs free energies in solution and in the gas phase. In‐solution calculations have been performed using both SCIPCM and PCM polarizable continuum models at the density functional theory (DFT)/B3LYP and ab initio Hartree–Fock levels with two basis sets (6‐31G* and 6‐311++G**). Good linear correlation has been obtained for calculated and experimental gas‐phase dipole moments, with an increase by ~30% upon solvation due to solute polarization. The geometry distortion in solution turns out to be small, whereas solute polarization energies are up to 3 kcal/mol for neutral molecules. Calculation of free energies of hydration with PCM provides a balanced set of values with 6‐31G* and 6‐311++G** basis sets for neutral molecules and ionic species, respectively. Explicit solvent calculations within Monte Carlo simulations applying free energy perturbation methods have been considered for 12 neutral molecules. Four different partial atomic charge sets have been studied, obtained by a fit to the gas‐phase and in‐solution molecular electrostatic potentials at in‐solution optimized geometries. Calculated FEH values depend on the charge set and the atom model used. Results indicate a preference for the all‐atom model and partial charges obtained by a fit to the molecular electrostatic potential of the solute computed at the SCIPCM/B3LYP/6‐31G* level. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

3.
The Poisson–Boltzmann implicit solvent (PB) is widely used to estimate the solvation free energies of biomolecules in molecular simulations. An optimized set of atomic radii (PB radii) is an important parameter for PB calculations, which determines the distribution of dielectric constants around the solute. We here present new PB radii for the AMBER protein force field to accurately reproduce the solvation free energies obtained from explicit solvent simulations. The presented PB radii were optimized using results from explicit solvent simulations of the large systems. In addition, we discriminated PB radii for N‐ and C‐terminal residues from those for nonterminal residues. The performances using our PB radii showed high accuracy for the estimation of solvation free energies at the level of the molecular fragment. The obtained PB radii are effective for the detailed analysis of the solvation effects of biomolecules. © 2014 The Authors Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

4.
We present a new approach for determining the strength of the dipolar solute‐induced reaction field, along with the ground‐ and excited‐state electrostatic dipole moments and polarizability of a solvated chromophore, using exclusively one‐photon and two‐photon absorption measurements. We verify the approach on two benchmark chromophores N,N‐dimethyl‐6‐propionyl‐2‐naphthylamine (prodan) and coumarin 153 (C153) in a series of toluene/dimethyl sulfoxide (DMSO) mixtures and find that the experimental values show good quantitative agreement with literature and our quantum‐chemical calculations. Our results indicate that the reaction field varies in a surprisingly broad range, 0–107 V cm?1, and that at close proximity, on the order of the chromophore radius, the effective dielectric constant of the solute–solvent system displays a unique functional dependence on the bulk dielectric constant, offering new insight into the close‐range molecular interaction.  相似文献   

5.
An explicit ion, implicit water solvent model for molecular dynamics was developed and tested with DNA and RNA simulations. The implicit water model uses the finite difference Poisson (FDP) model with the smooth permittivity method implemented in the OpenEye ZAP libraries. Explicit counter-ions, co-ions, and nucleic acid were treated with a Langevin dynamics molecular dynamics algorithm. Ion electrostatics is treated within the FDP model when close to the solute, and by the Coulombic model when far from the solute. The two zone model reduces computation time, but retains an accurate treatment of the ion atmosphere electrostatics near the solute. Ion compositions can be set to reproduce specific ionic strengths. The entire ion/water treatment is interfaced with the molecular dynamics package CHARMM. Using the CHARMM-ZAPI software combination, the implicit solvent model was tested on A and B form duplex DNA, and tetraloop RNA, producing stable simulations with structures remaining close to experiment. The model also reproduced the A to B duplex DNA transition. The effect of ionic strength, and the structure of the counterion atmosphere around B form duplex DNA were also examined.  相似文献   

6.
Gauss's law or Poisson's equation is conventionally used to calculate solvation free energy. However, the near‐solute dielectric polarization from Gauss's law or Poisson's equation differs from that obtained from molecular dynamics (MD) simulations. To mimic the near‐solute dielectric polarization from MD simulations, the first‐shell water was treated as two layers of surface charges, the densities of which are proportional to the electric field at the solvent molecule that is modeled as a hard sphere. The intermediate water was treated as a bulk solvent. An equation describing the solvation free energy of ions using this solvent scheme was derived using the TIP3P water model. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
We have examined the influence of water solvent on the Menshutkin reaction of methyl chloride with ammonia by performing static, quantum chemical calculations. We have employed large, explicit, and globally structure‐optimized water clusters around the reaction center, in a mixed explicit/implicit solvent model. This approach deliberately deviates from attempts to capture the most likely solvent‐molecule distribution around a reaction center. Instead, it explores extremes on the scale of rearrangement speed in terms of the surrounding solvent cluster, relative to the reaction progress itself. A comparison to traditional theoretical and experimental results enables us to quantify the energy penalty that is induced by the inability of the water cluster to instantaneously and completely follow the reaction progress. In addition, the influence of water clusters on the reaction energy profile can be much larger than merely changing it somewhat. Certain clusters can completely annihilate the sizeable activation barrier of 23.5 kcal mol?1.  相似文献   

8.
The correct representation of solute-water interactions is essential for the accurate simulation of most biological phenomena. Several highly accurate quantum methods are available to deal with solvation by using both implicit and explicit solvents. So far, however, most evaluations of those methods were based on a single conformation, which neglects solute entropy. Here, we present the first test of a novel approach to determine hydration free energies that uses molecular mechanics (MM) to sample phase space and quantum mechanics (QM) to evaluate the potential energies. Free energies are determined by using re-weighting with the Non-Boltzmann Bennett (NBB) method. In this context, the method is referred to as QM-NBB. Based on snapshots from MM sampling and accounting for their correct Boltzmann weight, it is possible to obtain hydration free energies that incorporate the effect of solute entropy. We evaluate the performance of several QM implicit solvent models, as well as explicit solvent QM/MM for the blind subset of the SAMPL4 hydration free energy challenge. While classical free energy simulations with molecular dynamics give root mean square deviations (RMSD) of 2.8 and 2.3 kcal/mol, the hybrid approach yields an improved RMSD of 1.6 kcal/mol. By selecting an appropriate functional and basis set, the RMSD can be reduced to 1 kcal/mol for calculations based on a single conformation. Results for a selected set of challenging molecules imply that this RMSD can be further reduced by using NBB to reweight MM trajectories with the SMD implicit solvent model.  相似文献   

9.
This study describes the framework of the quantum mechanical (QM)/Monte Carlo (MC)/free‐energy perturbation (FEP) method, a FEP method based on MC simulations using quantum chemical calculations. Because a series of structures generated by interpolating internal coordinates between transition state and reactant did not produce smooth free‐energy profiles, we used structures from the intrinsic reaction coordinate calculations. This method was first applied to the Diels–Alder reaction between methyl vinyl ketone and cyclopentadiene and produced ΔG values of 20.1 and 21.4 kcal mol?1 in aqueous and methanol solutions, respectively. They are very consistent with the experimentally observed values. The other two applications were the free‐energy surfaces for the Cope elimination of N,N‐dimethyl‐3‐phenylbutan‐2‐amine oxide in aqueous, dimethyl sulfoxide, and tetrahydrofuran solutions, and the Kemp decarboxylation of 6‐hydroxybenzo‐isoxazole‐3‐carboxylic acid in aqueous, dimethyl sulfoxide, and CH3CN solutions. The calculated activation free energies differed by less than 1.8 kcal mol?1 from the experimental values for these reactions. Although we used droplet models for the QM/MC/FEP simulations, the calculated results for three reactions are very close to the experimental data. It was confirmed that most of the interactions between the solute and solvents can be described using small numbers of solvent molecules. This is because a few solvent molecules can produce large portions of the solute–solvent interaction energies at the reaction centers. When we confirmed the dependency on the droplet sizes of solvents, the QM/MC/FEP for a large droplet with 106 water molecules produced a ΔG value similar to the experimental values, as well as that for a small droplet with 34 molecules. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

10.
Optimization of the Hamiltonian dielectric solvent (HADES) method for biomolecular simulations in a dielectric continuum is presented with the goal of calculating accurate absolute solvation free energies while retaining the model’s accuracy in predicting conformational free‐energy differences. The solvation free energies of neutral and polar amino acid side‐chain analogs calculated by using HADES, which may optionally include nonpolar contributions, were optimized against experimental data to reach a chemical accuracy of about 0.5 kcal mol?1. The new parameters were evaluated for charged side‐chain analogs. The HADES results were compared with explicit‐solvent, generalized Born, Poisson–Boltzmann, and QM‐based methods. The potentials of mean force (PMFs) between pairs of side‐chain analogs obtained by using HADES and explicit‐solvent simulations were used to evaluate the effects of the improved parameters optimized for solvation free energies on intermolecular potentials.  相似文献   

11.
Photoelectron spectroscopy combined with the liquid microjet technique enables the direct probing of the electronic structure of aqueous solutions. We report measured and calculated lowest vertical electron binding energies of aqueous alkali cations and halide anions. In some cases, ejection from deeper electronic levels of the solute could be observed. Electron binding energies of a given aqueous ion are found to be independent of the counterion and the salt concentration. The experimental results are complemented by ab initio calculations, at the MP2 and CCSD(T) level, of the ionization energies of these prototype ions in the aqueous phase. The solvent effect was accounted for in the electronic structure calculations in two ways. An explicit inclusion of discrete water molecules using a set of snapshots from an equilibrium classical molecular dynamics simulations and a fractional charge representation of solvent molecules give good results for halide ions. The electron binding energies of alkali cations computed with this approach tend to be overestimated. On the other hand, the polarizable continuum model, which strictly provides adiabatic binding energies, performs well for the alkali cations but fails for the halides. Photon energies in the experiment were in the EUV region (typically 100 eV) for which the technique is probing the top layers of the liquid sample. Hence, the reported energies of aqueous ions are closely connected with both structures and chemical reactivity at the liquid interface, for example, in atmospheric aerosol particles, as well as fundamental bulk solvation properties.  相似文献   

12.
We characterize the double‐faced nature of hydrogen bonding in hydroxy‐functionalized ionic liquids by means of neutron diffraction with isotopic substitution (NDIS), molecular dynamics (MD) simulations, and quantum chemical calculations. NDIS data are fit using the empirical potential structure refinement technique (EPSR) to elucidate the nearest neighbor H???O and O???O pair distribution functions for hydrogen bonds between ions of opposite charge and the same charge. Despite the presence of repulsive Coulomb forces, the cation–cation interaction is stronger than the cation–anion interaction. We compare the hydrogen‐bond geometries of both “doubly charged hydrogen bonds” with those reported for molecular liquids, such as water and alcohols. In combination, the NDIS measurements and MD simulations reveal the subtle balance between the two types of hydrogen bonds: The small transition enthalpy suggests that the elusive like‐charge attraction is almost competitive with conventional ion‐pair formation.  相似文献   

13.
Clusters of a solute and a few solvent molecules obtained from molecular dynamics (MD) are a powerful tool to study solvation effects by advanced quantum chemical (QC) methods. For spectroscopic properties strongly dependent on the solvation, however, a large number of clusters are needed for a good convergence. In this work, a parallel variable selection (PVS) method is proposed that in some cases efficiently reduces the number of clusters needed for the averaging. The mass, charge, or atomic density MD distributions are used as a secondary variable to preselect the most probable cluster geometries used for averaging of solute spectral properties. When applied to nuclear magnetic resonance chemical shift of a model alcohol, the method allowed one to significantly reduce the total computational time, by a factor of 10. Even larger savings were achieved for the modeling of Raman and Raman optical activity spectra of (S)‐lactamide molecule dissolved in water. The results thus suggest that the PVS method can be generally used for simulations of spectroscopic properties of solvated molecules and makes multiscale MD/QC computations more affordable. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
15.
A general molecular mechanics (MM) model for treating aqueous Cu2+ and Zn2+ ions was developed based on valence bond (VB) theory and incorporated into the atomic multipole optimized energetics for biomolecular applications (AMOEBA) polarizable force field. Parameters were obtained by fitting MM energies to that computed by ab initio methods for gas‐phase tetra‐ and hexa‐aqua metal complexes. Molecular dynamics (MD) simulations using the proposed AMOEBA‐VB model were performed for each transition metal ion in aqueous solution, and solvent coordination was evaluated. Results show that the AMOEBA‐VB model generates the correct square‐planar geometry for gas‐phase tetra‐aqua Cu2+ complex and improves the accuracy of MM model energetics for a number of ligation geometries when compared to quantum mechanical (QM) computations. On the other hand, both AMOEBA and AMOEBA‐VB generate results for Zn2+–water complexes in good agreement with QM calculations. Analyses of the MD trajectories revealed a six‐coordination first solvation shell for both Cu2+ and Zn2+ ions in aqueous solution, with ligation geometries falling in the range reported by previous studies. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Ab initio molecular dynamics (MD) simulations of the solvation of LiI3 in four different solvents (water, methanol, ethanol, and acetonitrile) are employed to investigate the molecular and electronic structure of the I3? ion in relation to X‐ray photoelectron spectroscopy (XPS). Simulations show that hydrogen‐bond rearrangement in the solvation shell is coupled to intramolecular bond‐length asymmetry in the I3? ion. By a combination of charge analysis and I 4 d core‐level XPS measurements, the mechanism of the solvent‐induced distortions has been studied, and it has been concluded that charge localization mediates intermolecular interactions and intramolecular distortion. The approach involving a synergistic combination of theory and experiment probes the solvent‐dependent structure of the I3? ion, and the geometric structure has been correlated with the electronic structure.  相似文献   

17.
The influence of solvation on the conformational isomerism of calix[4]arene and p-tert-butylcalix[4]arene has been investigated by using the continuum model reported by Miertus, Scrocco, and Tomasi (MST). The quantum mechanical (QM) and semiclassical (SC) formalisms of the MST model have been considered for two different solvents (chloroform and water). The suitability of the QM-MST and SC-MST methods has been examined by comparison with previous results derived from classical molecular dynamics (MD) simulations with explicit solvent molecules. The application of the continuum model to the solute configurations generated by using in vacuo classical MD simulations provides a fast strategy to evaluate the effects of the solvent on the conformational preferences of calixarenes. These encouraging results allow us to propose the use of continuum models to solutes with complex molecular structures, which are traditionally studied by MD simulations.  相似文献   

18.
We developed a quantitative approach to quantum chemical microsolvation. Key in our methodology is the automatic placement of individual solvent molecules based on the free energy solvation thermodynamics derived from molecular dynamics (MD) simulations and grid inhomogeneous solvation theory (GIST). This protocol enabled us to rigorously define the number, position, and orientation of individual solvent molecules and to determine their interaction with the solute based on physical quantities. The generated solute–solvent clusters served as an input for subsequent quantum chemical investigations. We showcased the applicability, scope, and limitations of this computational approach for a number of small molecules, including urea, 2-aminobenzothiazole, (+)-syn-benzotriborneol, benzoic acid, and helicene. Our results show excellent agreement with the available ab initio molecular dynamics data and experimental results.  相似文献   

19.
We used DSC for determination of the reaction enthalpy of the synthesis of the ionic liquid [C(4)mim][Cl]. A combination of DSC and quantum chemical calculations presents a new, indirect way to study thermodynamics of ionic liquids. The new procedure was validated with two direct experimental measurements and MD simulations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号